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Introduction
There has been much discussion about 

Hawking radiation and the information 
paradox. However, none of the researchers 
have completely resolved the mystery. This 
author has attempted to tackle the problem 
in a different way—using the black hole toy 
model, the Riemann Zeta non-trivial zeros 
layers, and the electromagnetic field around 
the boundary or continuum for information 
restoration. This author hopes that the present 
paper may serve as a pioneering study for those 
interested in the question of the information 
paradox and related matters.
Literature Review 
Quantum Mechanics – The Schrödinger 
Equation

TWhen one talks about the Schrödinger 
Equation or quantum mechanics, they often 
refer to the wave properties of a particle or 
the so-called wave equation [1], pp. 21-25 & 

Abstract

In my previous paper about the correlations between quantum mechanics and the four different natural 
forces, I suggested that there may be a fifth force or even the existence of a new particle. However, it 
remains a mystery to physicists, even after nearly a hundred years, that they cannot unify these four 
natural forces. This may be because there are indeed too many variables for them to consider. Also, there 
is a possibility that quantum mechanics may coexist with quantum field theory. In the present paper, this 
author proposes that there may be a misconception in the computational equation for relative time or 
gaps in the system for measuring time between quantum mechanics and general relativity. Hence, one 
may still not be able to unify these natural forces. This author suggests that we may need to rewrite 
parts of quantum mechanics – the Schrödinger equation – or even the general relativity equation. 
Additionally, this author proposes that there may be a bridge equation converting between quantum 
mechanics and general relativity.
Moreover, this author has employed the non-trivial zeta zeros to simulate the black hole or the so-called 
black hole toy model. In practice, there may be an electromagnetic field surrounding the boundary of 
the black hole, as well as the existence of a continuum along the boundary contour. This author hopes 
that, in such a case, we may decode those high-frequency electromagnetic waves into useful information 
and take a further step toward verifying Stephen Hawking’s famous theory on black hole radiation and 
information entropy. In fact, this author has used the HKLam statistical model theory to express the 
electromagnetic field energy-stress tensor (with the possibility of quantization) to analogically establish 
a quantized model for the Einstein Gravitational Field Equation. Hence, the problem of quantum gravity 
may then be solved. Last but not least, this author also expects that humanity may finally find a way to 
unify quantum mechanics and general relativity through modifications to the current quantum gravity 
theory, such as my proposed bridge-converting equation, etc.

[2], p. 22. This author will attempt to derive the 
equation from the wave nature of a particle. 
Let’s first consider a quantum-mechanical 
particle with energy E and momentum p, and 
its corresponding wave frequency is:.

and the wavelength is: λ=h/p. By introducing 
the angular frequency ω and so as the wave 
number k, then we may have:

 2 Evω π≡ =


	

where 2
h
π

=

Since E = p2/2m, 
we may have  

2

2
p
mh

ω =

Let us assume a particle with momentum 
ppp traveling in the positive x-direction. 
Then we will use a wave traveling in that 
positive x-direction. Hence, the corresponding 
harmonic waves are:

Ev
h

=
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( ) ( )  , , ( ) ( ).  Ikx I t Ikx I te e sin kx t and cos kx tω ω ω ω− − + − −

For the particle moving in the positive x-direction, we have:
	 sin(kx – ωt) 
For the particle moving in the negative x-direction, we have:
	 sin(kx + ωt)
Thus, by the principle of superposition, the resulting wave is 

just the sum of the two waves:
	 sin(kx – ωt) + sin(kx + ωt)
Practically, the particle has equal probabilities of moving in 

both the positive xxx-direction and the negative xxx-direction. 
The resulting sine function is:

	 2 sin kx cos ωt 	
which has a zero at t = π/2ω  and is, therefore, not acceptable.
However, if we consider the wave function eIkx-Iωt, then the 

superposition will be:
 2  Ikx I t Ikx I t I te e e cos kxω ω ω− − − −+ =

which is non-zero everywhere and thus acceptable.
Assuming eIkx-Iωt to be the standard harmonic wave function 

describing a free particle with a given momentum, we may be 
interested in the wave equation that this wave function satisfies. 
Differentiating the above wave function with respect to position 
xxx and time ttt, we find that the first derivative with respect 
to time is proportional to the second derivative with respect to 
position. Hence, we get:

2 ( ) ( )Ikx I t Ikx I tk e eω ωω− −= −
By considering the total energy (potential energy + kinetic 

energy) of the particle with mass mmm and momentum p, we 
have:

2

( , )
2
p v x t E
m
+ =

Therefore, using the Planck-Einstein relation, p = ℏk and 
multiplying the above equation by the wave function, we get:

( )
2

2 ( ) ( ) ( ? ),
2

Ikx I t Ikx I t Ikx I tk e v x t e e
m

ω ω ω− + − −−
=





(N.B. E = ℏω and p = ℏK)
But as 

2
2

2k
x
∂

→
∂

  and  ,I
t

ω ∂
→

∂
 we obtain:

( )
2 2

2 ,  
2

Ikx I t Ikx I t Ikx I te v x t e I e
m x t

ω ω ω− − −− ∂ ∂
+ =

∂ ∂




In a more generalized form, we have:  [3]

( )
2

2  ,
2

Ikx I t Ikx I t Ikx I te v x t e I e
m t

ω ω ω− − −− ∂
∇ + =

∂




This is the famous Schrödinger Equation.

Einstein General Relativity Theory Equation
Next, we shall proceed to the derivation of Einstein's General 

Relativity Theory equation, also known as the field equation [4]. 
First, let us briefly review the basics of tensor operators [5]. A 
tensor can be viewed as a generalization of a matrix, but it uses 
more indices, which can be either upper or lower. For example, 
consider a 4×4×4×4×4 tensor:

( )
0 , , , , 3

T T αβ
γδε α β γ δ ε≤ ≤

≡

Practically, we may consider spacetime as a four-dimensional 
manifold, represented by t, x, y, and z. For convenience, we can 
denote these coordinates as:  x0 = t, x1 = x, x2 = y, x3 = z. If we 
take a four-dimensional row vector with four components, v = 
(v0, v1, v2, v3). the upper index will be denoted by a small Greek 
letter: v≡(vα)0≤α≤3. In fact, we can interpret the upper index of a 
tensor as representing the number of dimensions, and the lower 
index as representing the rank or position to locate the desired 
information or data  [6].

If we differentiate the position 4-vector v, we get:

( )

0

1

0 3 2

3

tx

xx
v v

yx

x z

α

α≤ ≤

∂ ∂ 
   ∂∂   
∂∂   

  ∂ ∂ ∂∂≡ = =    ∂∂∂ ∂   
 ∂ ∂
  ∂ ∂    ∂  ∂ 

Alternatively, we can propose a symbolic operator, such as 
“[∇]” similar to the Laplace operator:

  
t x y z
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

for the 4-dimensional position vector described above. That is,

( ) 0 3

0 3

[ ]( )       [ ]( )  .V or V etc
v v

α
αα

α

≤ ≤

≤ ≤

∂ ∂
≡ = ∇ ∇

∂ ∂

To begin the derivation of the General Relativity Field 
Equation, we first introduce Gauss's Law for gravity, or the 
Gauss's Flux Theorem for gravity [8]. This law states that the 
gravitational flux (similar to magnetic or electric flux) over a 
closed surface is proportional to the mass enclosed within that 
surface. In practice, considering a mass, such as a rocket or 
spacecraft, that falls into the gravitational field of a larger mass, 
like a star, within the curved spacetime of the universe, we can 
express this relationship in differential form as follows: 
	 4g Gπ ρ∇⋅ = −

(Note: Gauss's Law has another form expressed through 
integration; this author will not repeat it, as the difference lies 
only in the format of expression, while the concepts remain 
similar.)

Since the gravitational field has a zero curl, indicating that 
gravity is a conservative force, we can express gravity in terms 
of a scalar potential, commonly referred to as the gravitational 
potential Φ:

	 g = -∇Φ.
When substituting into Gauss's Law for gravity, we obtain [9]:
	 ∇2 Φ=4πGρ 	
where Φ = U/m = - GM/r and U(r) is the potential energy due 

to the gravitational field [8].
In addition, we note that 4πGρ is closely related to the energy-

momentum tensor (Tμν as it generally describes all forms of 
energy and matter. Furthermore, ∇2 Φ can be used to determine 
the curvature of spacetime and its relationship with gravity or 
energy.

This author wishes to highlight an interesting fact: matter is 
always described by the energy-momentum tensor Tab, which 
represents energy conservation and must therefore satisfy 
the continuity equation, similar to fluid dynamics. In fact, 
conservation can be expressed by the equation ∂aj

a = 0, where 
ja is the current. In the case of the energy-momentum tensor, the 
continuity equation is:

∇a Tab = 0.
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Initially, Einstein proposed that the relationship between 
geometry and matter is described by the Ricci Tensor Rab. Thus, 
the equation is:

Rab = kTab

where k is a constant. In the case of a vacuum, where there is 
no gravitating matter, Tab vanishes, and the equation reduces to:

Rab = 0.
On the other hand, in the presence of matter, the Ricci tensor 

must satisfy the contracted Bianchi identities:
∇a Rab = 1/2 ∇b R,

This leads to a potential problem. By applying ∇a to both sides 
of the equation Rab = kTab, we find:

∇a R = 0.
To ensure the conservation of energy, the scalar curvature 

must be constant everywhere. However, consider a very massive 
star: its neighboring curvature will be quite large, but as the 
distance from the star increases, the curvature may approach 
zero. This creates a contradiction with the requirement that the 
scalar curvature must be constant.

In practice, by rewriting the equation in its equivalent form, 
we have 1 0

2
a

ab abR g R ∇ − = 
 

which satisfies the continuity equation ∇a Tab. In other words,

1 k
2ab ab abR g R T − = 

 

which yields consistent results. Hence, we define the Einstein 
Tensor as:

1
2ab ab abG R g R = − 

 

For different kinds of metric tensors, these are used to capture 
all of the geometric and causal structures of space and time, 
such as time, distance, volume, curvature, and angle. In general, 
we have three types of metric tensors: the Minkowski metric for 
flat spacetime, the spherical coordinates for flat space, and the 
Schwarzschild metric for black holes. This author will focus on 
the black hole metric as follows:

2 2 2 1 2 2
2

2
2(1 (1 ,2 2) )GM GMds c dt dr d

rc rc
r−= − − ++ Ω−

The black hole metric can thus be represented as:

2

1

2

2

2

21 0 0 0

20 1 0 0

0 0 0
0 0 0

GM
rc

GM
rc

r
r sinθ

−

  − −    
  −  

  
 
  
 

In reality, the Einstein constant is given by:

4

8k  G
c
π

=

Finally, we conclude that the Einstein Field Equation is:

Field Theory – Classical Vs Quantum
In classical field theory, such as general relativity, Einstein 

conceptualizes curved space-time as an infinite array of coupled 
harmonic oscillators, akin to a mass-spring system. To elaborate, 
one can imagine two or three masses connected by springs or an 
"infinite box spring." This means that the curved space is filled 
with a dense grid where each node represents a mass, and every 
mass is connected to its nearest neighbours by springs.

Physicists utilize this concept of the "infinite box spring" to 
describe wavelike phenomena that propagate through space 
when one of the point masses is "pinged" by an external 
object. This scenario raises questions about determinism: given 
known initial conditions of the field, the evolution of the field 
is fundamentally determined by its configuration at any given 
time.

On the other hand, in quantum field theory, one can similarly 
consider the "infinite box spring" analogy. The key difference 
lies in the fact that the random motion of this infinite box 
spring is driven by quantum mechanics. Specifically, a quantum 
harmonic oscillator exhibits random zero-point motion, 
resulting in a discrete spectrum of excitations above this random 
ground state.

To further illustrate this concept, one might envision a 
"quantum (randomness) box spring mattress" to depict the 
nature of a quantum field. In practice, each discrete spectrum of 
excitations for a quantum harmonic oscillator can be interpreted 
as particles in quantum field theory. In this context, it implies 
that the quantum field will achieve certain configurations based 
on probability amplitudes, expressed as P = Amp |A|2.

Obviously, for classical field theory, such as in the case 
of general relativity, it does NOT use quantum mechanics. 
Otherwise, when formulating the general relativity equation, it 
does NOT include any concepts of quantization or even quantum 
mechanics. Basically, classical field theory and quantum field 
theory are two types of box spring systems – infinitely (classical 
continuum for large-scale matter) vs. quantum (randomness), 
(quantum continuum for small-scale matter). Hence, it is very 
difficult to derive the formula for quantum gravity or “quantize 
gravity,” as one may need to merge the small-scale aspects 
into the large-scale ones. My suggestion is to reformulate/re-
establish either quantum mechanics, general relativity, or both 
kinds of equations. Thus, this author proposes a hybrid idea that 
one may begin to subdivide the large curved space-time into a 
very small-scale quantized one, similar to the so-called “finite 
element method” in the engineering field or to this author’s paper 
titled “A Rationalized Visit to Holy Land — Israel” [10]. That 
is, a mirror image of a mirror image, or an infinite number of 
large harmonic springs such that each individual spring contains 
some quantized small randomness springs. These small springs 
will oscillate discretely, randomly, quantized, spectrally, and 
harmonically in each individual section of the large spring, etc. 
In the mirror image way, the collection of these small quantized 
springs in the quantum field can make up the large individual 
spring in the classical field.

In brief, this author suggests that the relationship between 
quantum field theory and quantum mechanics is just like the 
two sides of a coin. To be precise, they are only the primal-dual 
business way of the simplex method for describing microscopic 
structures. Hence, analogically, this author proposes that string 
theory and loop quantum gravity may also be the primal-dual 
business way of depicting macroscopic phenomena in the 
universe.

(7)

( ) ( ) ( ) ( )
1
2

kR g R g Tµν µν µν µν=− + Λ
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Major Mathematical and Computational Results
From [11], we may have:

( ) [ ].1/2 2

1
'

s
rr

b r
xξ

−

∈ ≥
=∑ 

 which is a generalized Dirichlet series.

Then one may get:

( ) [ ]

( ) ( ) ( )
( )

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )
( )

( ) ( )( ) ( )( ) ( )
( )

( ) ( )( )

.1/2 2

2

2

1
'

1 1 1         ,
''

1 1 1. .        
'

1 1 1                '

1 1 1               '

1 1              

s
rr

dx b r
x

dx dx
xx x
x

i e dx
x x ln x

x dx
x ln x ln x x

x dx
x ln x ln x x

d

r

x

o

x ln

ξ

ξξ ξ
ξ

ξ ξ ξ

ξ
ξ ξ ξ ξ

ξ
ξ ξ ξ ξ

ξ ξ

−

∈ ≥
∫ = ∫

∫ = ∫

∫ = ∫
∂

= − ∫
−   

= + ∫
  

= + ∫

∑ 

( )( )
( )( ) ( )( )

( ) ( )( )
( )( )

( )( ) ( )( )

( ) ( )( )

( ) ( ) ( )( ) ( )

2

2

1 1             2[ ]

1 1            ...

1 1 1. .        1
'

x
ln x x

x
x ln x ln x x

n
x ln x

I e dx n
x x ln x

ξ

ξ ξ

ξ
ξ ξ ξ ξ

ξ ξ

ξ ξ ξ

= + ∫
 ∂  

 
= =  

  

∫ = − − − − − − − − −

Case I: Use a Linear Equation to approximate 
( )
1
'

dx
xξ

∫

( ) ( )( ) ( )( )

( ) [ ]

( ) ( ) ( )( ) ( )( ) ( )

.1/2 2

1 1 1

1
'

                

1 1 1 1
'

s
rr

s
r

s
r

ln x
x ln x

or

dx b r
x

b r

dx ln x b r J x r s
x x ln x

ξ
ξ ξ

ξ

ξ
ξ ξ ξ

−

∈ ≥

−

−

 
 +   

  

∫ = ∫

= ∫ ∫

 
 ∫ = + = ∫ ∫ ∂ ∂   

  

∑ 

where J(x) is the Jacobian matrix of the transformation from 
∂x∂y normal planed coordinate to ∂r∂s, or the curved (spherical) 
plane coordinate [12].

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

1 1 1) *

1 1. . 1) 0

s
r

s
r

ln x b r J x r s
x ln x

i e ln x b r J x r s
x ln x

ξ
ξ ξ

ξ
ξ ξ

−

−

 
 + = ∫ ∫ ∂ ∂ − − − − −   

  
 

 + − ∫ ∫ ∂ ∂ =   
  

which is a linear equation in terms of ln(ξ(x)).

Indeed, the root of the left hand side in the equation (*) is:  
ln(ξ(x)) = -1 or ( )( )

1
ln xξ = 0 or  ( )

1 0,
xξ

= i.e. Sub-case I: when ξ(x) = 
e-1 or 1/e, 

Sub-case II: when (lnξ(x)) = -∞ or ξ(x) = 0, x = trivial zeros 
(negative even integers) or non-trivial zeros 

Sub-case III: when ξ(x) = ∞ or x = 1. 
Moreover, ξ(x) = e-1 is also one of the optimum value of the 

equation [ ∫∫∫br r-s J(x)∂r∂s]’s outcome polynomial. ξ(x) = 0 
when ( )( )

1
ln xξ = 0, then x equals to the negative even integers or 

refer to those trivial zeros of the zeta function. Certainly, there 
may be those non-trivial zeros for the zeta function [13]. Or 

ln ξ(x) = -∞ when ξ(x) = 0. That says, we may approximate 
the singularity of the black hole toy model as the case x = 1 
when ( ) ( )1 0     or x

x
ξ

ξ
= =∞  by the linear equation ( ) ( )( ) ( )( )1 1 1ln x

x ln x
ξ

ξ ξ

 
 +   

  
. 

To be precise, the above result may imply the asymptotic safety 
in quantum gravity or also the non-trivial fixed point [14] etc.
Case II: Use a Quadratic Equation to Approximate 

( ) ( ) ( )( ) ( )( )( )

( ) [ ]

( )

( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( ) ( )( )

.

2

1/2 2

2

2

2

1 1 1 1
'

1
'

                 

1 1 1 1
'

1 1 1

1 1 1 1.

s
rr

s
r

s
r

s
r

dx ln x
x x ln x

or

dx b r
x

b r J x r s

dx ln x b r J x r s
x x ln x

ln x b r J x r s
x ln x

i e
x xln x ln x

ξ
ξ ξ ξ

ξ

ξ
ξ ξ ξ

ξ
ξ ξ

ξ ξξ ξ

−

∈ ≥

−

−

−

 
∫ = − 

  

∫ = ∫

= ∫ ∫ ∂ ∂

 
∫ = − = ∫ ∫ ∂ ∂ 

  

 
− = ∫ ∫ ∂ ∂ 

  

 
+ − 

  

∑ 

( ) ( )0 **s
rb r J x r s−∫ ∫ ∂ ∂ = − − − −

which is a quadratic equation in terms of 
( )( )

1
ln xξ

Thus, we have:

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ( ) ( )

1
2

2

1
2

2

1 1 1 1 1{ ( ) 4( )( /  2

1 1                 [   )]
2 4

1 1 1( )   ***
2 4

[ ( )]

(

s
r

s
r

s
r

b r J x r s
x x x xln x

x b r J x r s

x b r J x r s
ln x

ξ ξ ξ ξξ

ξ

ξ
ξ

−

−

−

 
= − ± − − − ∫ ∫ ∂ ∂ − 

 

= ± − − ∫ ∫ ∂ ∂

− − = ∫ ∫ ∂ ∂ − − − −

Indeed, the optimum (maximum/minimum) point of the left 
hand side in the equation(***) is:

when ξ(x) = e2, ∫∫br r-s J(x)∂r∂s will attain its optimum 
(maximum/minimum) value. Moreover, the roots of (***) is 
also one of the optimum value(s) of the primitive function [ ∫ ∫ ∫ 
br  r

-s J(x)∂r∂s]’s outcome polynomial.
But if we integrate the left hand side of the equation (***) at 

ξ(x) = e2, one may get:

( )( ) ( )( ) ( ) ( )2
2 2

1 1 1 1 1 1 1 1[( ) ] ***
2 4 4 4

s
rdx dx x c b r J x r s

e ex ln xξ ξ
−∫ − − = ∫ − = − + = ∫ ∫ ∫ ∂ ∂ − −

Hence, we may evaluate the above triple integral directly 
from the simple definite integral. We also know the root of the 
equation 

2

1 1
4

x C
e

− +  which is also the root of ∫ ∫ ∫ br r
-s J(x)∂r∂s. If 

we can transform ∫ ∫ ∫ br r
-s J(x)∂r∂s into the form of Gauss’s 

Divergence Theorem, i.e. ∫ ∫ ∫ ∇⋅F dV = ∫ ∫ F. n ds, hen this 
implies that the flux passing through the surface S on the right 

( )( )
1 1 1 1 , , , .
2 4 2

or i e
ln xξ

 − = 
 

( )
1
'

dx
xξ

∫
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side of the Divergence Equation is the same for the volume 
V over the object. Even in a higher dimension, we may get a 
similar argument for the famous generalized Stokes’ Theorem:

. .. . . dω ω∂ Ω Ω∫ = ∫  which is usually applied in the computation of the 
flows for the surface of the airplane object and internal structural 
stress, tension, and deformation, etc., for the airplane’s fluid 
dynamics.

 In addition, the flying object can also work with finite 
element analysis, the object’s stiffness matrix together with my 
HKLam statistical model theory for prediction or other kinds 
of modeling, etc. In particular, with reference to [15], for a 
simple extension, the complex square contour (line integral) 
may then be reduced into the projection (or the dot product) 
of a coordinate point or function to the tangential vector 
space, which may actually be another type of the 1-form to the 
complex functions or complex numbered coordinates in the 
2-dimensional differential geometry or a complex plane. This 
means a complex projective structure or a complex projective 
space (which may be considered as the complex manifold [16]). 
Indeed, the multi-dimensional complex manifolds may be 
used to determine the deformation or the curvature form of the 
complex structures, etc. To go forward a step, we may interpret 
such space as the quantum pure states of size n. 

Actually, for my paper [15], there may be a path homotopy such 
that the MATLAB programming segment can lead to locating 
the non-trivial zeros of the Riemann Zeta function through the 
associated fixed-point theory (with category theory), etc. [17]. At 
the same time, for the complex contour integral to be zero, there 
must be a non-trivial root located in the MATLAB segmentation 
square [15]. However, the converse—that if a non-zero value 
is calculated for the complex contour integral, the implication 
about no zeta roots may NOT be true—suggests that one may 
need the path homotopic theories to search for such hidden 
non-trivial zeros for the convergence of the fixed-point spectral 
sequence(s) [18,19]. Any divergence evidence of such spectral 
sequences implies that there are NO non-trivial zeros for the 
complex contour integral over the homotopy path H. In fact, this 
author has once again turned the pure mathematics of algebraic 
topology into computational applied mathematics, following 
my undergraduate mathematics project that focused on the 
foundations of mathematics with applications in both language 
linguistics and symbolic computations, etc. This author wants 
to remark that two paths are path homotopic if and only if they 
have the same starting point and the same ending point [20]. 
Thus, intuitively and obviously, the square contour used in my 
MATLAB segment [21] is practically path homotopic.

In brief, we may approximate the integral ( )
1
'

dx
xξ

∫  using 
both linear and quadratic equations, similar to cases I and II. 
Thus, one may eventually derive a more generalized situation 
through the Taylor series of order 2 approximation by using the 
commercial mathematical software Maple, which will be shown 
in the coming section.

(N.B. Social category theory was once used in the Soviet 
Union and continues to be applied in some Eastern communist 
countries for the incorporation of different categories of people, 
such as men, women, and the elderly. However, from this 
author’s perspective, technology or knowledge itself is neutral; 
its good or bad usage depends entirely on one’s intentions. That 
said, if nuclear bomb technology had first been developed by 
the dictatorship leaders of the Axis powers during World War 
II (WWII) rather than by the liberal and democratic U.S.A., our 
free world history might have been completely inverted from 

the mid to late last century and even today.)
The Generalization – Use a Second Order Taylor Series 

to Approximate ( )
1
'

dx
xξ

∫  with Canada Maple (Soft: student 
licensed version, 2022)

In practice, what we want to compute is to find the optimum value(s) 
of ( )

1
'

dx
xξ

∫ . By the Fundamental Theorem of Calculus, ( )
1
'

dx
x
x

ξ
∫

∂
∂

 is just    
( )
1
' xξ . Hence, for the ξ'(x) to be maximum, then ( )

1
' xξ will attain its 

minimum or the vice versa. 
Thus, by this author’s previous paper [13], ξ(x) is only:

1 , 1..u vitaylor x a a
x +

  ∑ = = ∞    

or

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )
( )

( ) ( )

22 2
2

2 2

ln ln ln

3 2 2 3 2 2

1 3
3

2 2 2 2

3 3

ln

2
21

e e e
3 3 3 6 3 2 2

6
2 2

2 2
e

u vi k u vi k u vi k

k

u vi k

u viu uvi vi u vi x k
k ku vi x k

k
u u vi uvi vi u uvi vi u vi

k x k
u uvi vi u vi u vi u uvi vi u vi u vi

k k

+ + +

∞

=

+



 ++ + − −
− + −  + −  +

 + + + − − − + +∑ − + 
  −
 + + − − + + + − − +






−

−
+










 
 
 
 
 
 
 
  



Then ξ'(x) is just:

( )
( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

( ) ( )

22 2

2 2

ln ln

3 2 2 3 2 2

1 3
2

2 2 2 2

3 3

ln

22
2

e e
3 3 3 6 3 2 2

63 ( )
2 2

2 2
e

u vi k u vi k

k

u vi k

u viu uvi vi u vi x k
k ku vi

k
u u vi uvi vi u uvi vi u vi

k x k
u uvi vi u vi u vi u uvi vi u vi u vi

k k

+ +

∞

=

+




−








 ++ + − −
− + −  +  + +

 + + + − − − + +∑ − + 
  −
 + + − − + + + − −



+
− 

 +











 


Set  ξ'(x) = 0 and hence solve for x, we have:

( )( )2 2 2 2
2 2

1 2 2 4 4 3 4 4 3
2 3 3 2

u uvi vi u uvi vi u vi u vi k
u uvi vi u vi

+ + + − − − − − − + + +
+ + + + +

or
( )( )2 2 2 2

2 2

1 2 2 4 4 3 4 4 3
2 3 3 2

u uvi vi u uvi vi u vi u vi k
u uvi vi u vi

− − − − − − − − − − − − −
+ + + + +

as the optimum (minimum/maximum) values for ξ(x) or they 
are just the roots of  ξ'(x).

For ξ'(x) to attain its optimum(maximum/minimum) values, 
we need to differentiate it once more and set it equals to zero, 
i.e. 

( )

( )

( ) ( )

( )( ) ( )( )
( )

( ) ( )

22 2

2 2

3 2 2 3 2 2

1 3

2 2 2 2

3 3

''

22
2

e
3 3 3 6 3 2 2

66
2 2

2 2
e

u vi ln k

k

u vi ln k

x

u viu uvi vi u vi
k k

u u vi uvi vi u uvi vi u vi
k x k

u uvi vi u vi u vi u uvi vi u vi u vi
k k

ξ

+

∞

=

+

=

 ++ + − −
− +  
  +

 



+ + + − − − + +∑ − + 

−

 
 





 
 
 
 
 
 


+


 
 

  −
+ + − + + + + +

− 
 

Solving the above equation w.r.t. x, we have:

( )

( )

21

31

13

12

u vik

u vik

u vi
k k kx

u vi
k k k

∞

=

∞

=

 + + ∑ 
 =
 + + ∑ 
 

                                           

as the optimum (maximum/minimum) value for the function 
ξ'(x). Or 1/ξ'(x)  will attain its optimum value at

( )

( )

21

31

13

12

u vik

u vik

u vi
k k kx

u vi
k k k

∞

=

∞

=

 + + ∑ 
 =
 + + ∑ 
 
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Hence, the root of 1/ξ'(x)  is:

( )

( ) ( )

( )

( ) ( )

2 221

3 31 1

2 221

31 1

13
2 4 4 3

1 12 2

13
2 4 4 3.

1 12 2

u vik

u vi u vik k

u vik

u vik k

u vi
u uvi vi u vik k kx

u vi u vi
k k k k k k

u vi
u uvi vi u vik k kx

u vi u vi
k k k k

∞

=

∞ ∞

= =

∞

=

∞ ∞

= =

  + + ∑   − − − − − −  − = ±
    + + ∑ + + ∑        
 + + ∑  − − − − − − = ±
 + + ∑ + + ∑ 
 

( )
3

*****
u vik k

− − − − − − −
 
 
 

In practice, instead of difficult mathematical concepts with 
computations, this author have developed a general algorithm 
for finding the roots of 1/ξ'(x)  and hence the optimum value(s) 
of ∫ 1/ξ'(x)  dx by using the Canada’s Maple (2022 student 
license):

Step 1: (Calling) MTM;
Step 2: Set t = ξ’(x)  with order 2 Taylor Series;
Step 3: Solve t;
Step 4: Let g5:= Taylor(1/t, x = a);
Step 5: Set g5 with order 2 Taylor Series;
Step 6: (Calling) MTM;
Step 7: Solve (g5);
Step 8: Simplify the two roots.
According to [8], (*****) may become to the capacitance of 

the coaxial cable when:

( )

( ) ( )

( )

( )

2

2 221

3 31 1

21

31

2

13
2 4 4 3 '

1 12 2

13

12

u vik

u vi u vik k

u vik

u vik

c

u vi
u uvi vi u vik k klog

u vi u vi
k k k k k k

or

c
u vi

k k klog
u vi

k k k

πε

πε

∞

=

∞ ∞

= =

∞

=

∞

=

=
     + + ∑    − − − − − −     ±      + + ∑ + + ∑             

=
 + + ∑ 
 
+ + ∑


( )

2 2

31

2 4 4 3
12 u vik

u uvi vi u vi

u vi
k k k

∞

=

  
   − − − − − −   ±

     + + ∑         

With reference to [2],
( ) ( ) ( ) ( ) ( ) ( ) ( )2 1

2 11 . . 1 . . . 1 . . 1 . . .1 ,s sln N ln N s s ln N ln Nξ ξ ξ+ ≤ + ≤ ≤ ≤ + ≤ +

where s2 .⩽. 1 .⩽. s1 . Thus, for any x of ξ(x),
ln(N+1) .≤. ξ(x) .≤. 1+ln(N) .

Hence, substitute back into (*),

( ) ( )
1 1 1 . . 1

1 1
s

re dx b r drds e dx
ln ln N ln ln N

−
   

∫ + ≤ ∫ ∫ ∫ ≤ ∫ +   
+ +            

If we go ahead for a step and approximate ( ) ( ) ( )( )1 '' '
'

dx x ln x
x

ξ ξ
ξ
∫ =  

by the second order Taylor series, then one may get:

( ) ( )( ) ( ) ( ) ( )2'
'' ' '' ’

2
(

x
x ln x x x

ξ
ξ ξ ξ ξ −=

By applying the approximation (1+x)n = 1 + nx, we may have:

( ) ( )

2 2
1 1. .

1 1
s

re dx b r drds e dx
ln lnN ln lnN

−   
∫ ∫ ∫ ∫ ≤ ∫   + +   

I.e. For a 4-dimensional space-time, f(x,y,z,t) of volume, it 

can be expressed as the volume of rotation of the reciprocal of 
the square of a log function for a toy model of a black hole. 
In particular, we may employ ∫.[1/ln(x)]2dx for the purpose of 
approximating the black hole toy model. 

Therefore, by the following Matlab segment program code, 
we get the simulated quantization [3] to such black hole toy 
model:

	 MatLab Scripting of plotting 3D Revolution of function 
“[1/log(x)]2”

	 x = linspace (1, 5, 20); %Creates 20 points between 
interval [1,5]

	 y = [1./log(x)].^2; %The revolution function 
	 plot (x,y), axis equal % draw profile
	 xlabel(“x”); ylabel(“y”);
	 [X,Y,Z] = cylinder(y);%use cylinder function to rotate 	

figure
	 surf (X,Y,Z), axis square x label (“Z”);y label(“y”);zl 

abel (“X”)

Figure 1: A Matlab Simulated Quantization to the Toy Model of a 
Black Hole. A Gabriel’s Horn with finite volume but infinite surface 

area and the converse is NOT true [61].

Furthermore, as we have already known the root of ∫∫∫br  r
-s 

drds is 1/e, or , one may also approximate one of the root of the 
two squeezing inequalities or both of:

( )

2
1

1
e dx

ln lnN
 

∫  + 
 and 

( )

2
1

1
e dx

ln lnN
 

∫  + 
 ---------- (**)

Thus, we may even guess back/approximate the optimum 
point (maximum/minimum value) of the both squeezing 
inequalities (**) of the black hole toy model by substituting 
ln(N) = 1- and 1+ to approach the true value of root of the both 
squeezing inequalities in (**).
Mathematical Implications – A Conformal Mapping & a 
Jacobian Matrix 

Consider the spherical mapping [8] & [23],
	 w = u + vi = ez = ex+yi where 0 < Im z < a, 
with u = excos a ---------(eqt 1)
and 
          v =  exsin a ---------(eqt 2) 
where -∞ < x < ∞ and y = a
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which transforms the ordinary or normal rectangular square 
strip in the z-plane into the spherical strip to the w-plane. 

In addition, (eqt 2)/(eqt 1) gives us a straight line v = u tan a, 
which passes through the origin in the w-plane. Then obviously, 
the aforementioned spherical conformal mapping can be applied 
for the transformation between ∫1/ξ'(x) dx and ∫ ∫ br r

-s. That says, 
the wanted Jacobian matrix is:

u u
x y
v v
x y

∂ ∂
∂ ∂
∂ ∂
∂ ∂

Or by expanding the above matrix in its determinant form, we 
have the requirement:

0 0| , . .0u v u v x y
x y y x

 ∂ ∂ ∂ ∂
− ≠ ∂ ∂ ∂ ∂ 

for a one-to-one mapping. 
Using the Cauch-Riemann equations     v u u vand

y x y x
∂ ∂ −∂ ∂

= =
∂ ∂ ∂ ∂

, we 
may then get:  

2 2

0 0| , 0u v x y
x y

 ∂ ∂
+ ∂ ∂ 

or if f(z) is analytic and f’(z0) .≠.0, then w = f(z) provides a 
1-1 mapping of a neighbourhood of z0. Obviously both eqt (1) & 
eqt (2) are analytic and w = u +vi = f(z) with its first derivative 
(d w/d z = d ez/d z = ez) not equal to zero for all z in the z-plane, 
hence w = f(z) provides a one-to-one conformal mapping from 
the w-plane to the z-plane [8]. Thus, the wanted Jacobian matrix 
for the above transformation should be:

x x

x x

e cosy e siny
e siny e cosy

−

Or we have the following approximation:

( ) ( ) ( )( ) ( )( )
2

1 1 1 1
'

x x
s

r x x

dx ln x
x x ln x

e cosy e siny
b r r s

e siny e cosy

ξ
ξ ξ ξ

−

 
∫ = − 

  
−

= ∫ ∫ ∂ ∂

But both x and y are dummy variables, the result follows 
immediately:

( ) ( )( ) ( )( )
2

1 1 1
r r

s
r r r

e coss e sins
ln x b r r s

x ln x e sins e coss
ξ

ξ ξ
−

  −
− = ∫ ∫ ∂ ∂ 

  

Taylor Approximation of 
( ) ( )( ) ( )( )

2
1 1 1ln x
x ln x

ξ
ξ ξ

 
− 

  

By using the concept of mirror image of the mirror image with 
the approximated substitution of ln(x) = (x - x2/2), we may get:

( )( ) ( ) ( ) ( ) ( )
2

2 ) (1/ 2( )( )2
2
x

ln x x x x
ξ

ξ ξ ξ ξ= − = −

thus, 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2

2
2 2

1 1 1 1 1 1[ 1]

1 2 1 2( ) ( )  ****
2 2

ln x
x x xln x ln x ln x

x xx x x x

ξ
ξ ξ ξξ ξ ξ

ξ ξξ ξ ξ ξ

   
− = −   

      

= − − − − − − −
− −

But as 

( ) ( )

( )

2

1

2 2

1

11 . . 1    ( )
2

1 1[( 1) ]. . . . ( )
2 2

N

xn

N

xn

Nln N lnN and ln N N
n

N NN N
n

=

=

+ + = −

+
+ − + −

∑

∑

 

 

By substituting ( ) ( )2 2

1 1

11 1[ 1 ] (1 )
2 2

N N

x xn n

N NN and N
n n= =

+  
= + − = + − 

 
∑ ∑  into (****) 

respectively, we may get:

( )

22 2 2 22 2

2 2

1 2 1 2

1 1 2 1 1 22 1 12 2 2 22 2

1 1 4                      2 2 .
31 31

2 2 2

N N N NN NN N N NN N

N NN

=
                    + − + − + − − + −+ − − + −                                        

= =
      − −+ −       +    

 



Discussion – Quantization of a Black Hole by the Light 
Bending Rings and the Information Paradox 

Figure 2: A Black hole photo sample that is obtained from the U.S.A. 
NASA [25].

In reality, there may be visible images of different light 
paths or rings of beams that are bent by the strong gravity of a 
black hole. Therefore, this author suggests an algorithm for the 
quantization of any visible black hole with bending light paths 
in the following manner:

1.	 Record the image data for the different bending paths 
(rings) of light from the targeted black hole.

2.	 Compute the corresponding contour integrals of the 
bending paths or rings of beams. According to Stokes’ 
theorem [27-29], these integrals may imply different 
surface areas of the black hole of interest [32].

3.	 The calculated surface areas may then imply different 
energy entropy quantizations of the black hole [26].

4.	 Each computed area may correspond to its respective 
(area) energy (flux) quantization from the boundary of 
the different bending paths or rings of beams.

5.	 Complete the full quantization of the investigated black 
hole.

In practice, for the function(1/lnx)2 to approximate the toy 
model of the black hole, we may quantize its surface area 
piecewise using the following method:

Accordingly, the surface area piece-wisely (SAPW) for any 
function is:

2 1/2( ) .[2 ( )(1 ( ) ) ]
b

a
SurfaceArea SA f x f x dxπ ′= +∫

In the present toy black hole (PWTBH) model case:

1

1

2 2
2 1/2

2 3
2 1/2

[ (1 1. 2 1  /

1 2 1(. 2 1 [

[ )

[ )

n

n

n

n

PWTBHSA d dx dx
lnx lnx

dx
lnx x lnx

ζ

ζ

ζ

ζ

π

π

−

−

   = +   
   

−   = +

 

   
 

 


 

 

∫

∫

By using the Mathematica (Home Liscensed Version) and 
mkes the Taylor Expansion about a point “a” and integrate for 
the first two non-trivial Zeta Zeros, i.e. ξ1 and ξ2 we may get:
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[ ]( ) [ ]
[ ]( ) [ ]

[ ]( ) [ ]

2.5 2.5

26 2512 12
6 62 2

9

2.5

2412
62

864. 1512.

4 41 1

4.56854*10
1080. ...

41

a log a a log a
a log a a log a

a log a
a log a

 +               + +                    
 
 + +

   
   +         

In order to find the curvature of the desired logarithmic 
function, we first need to determine its corresponding arc length 
parametrization as follows:

(N.B. The arc length parametrization is given by √(1+[f'(x)]2) 
which is closely related to the arc length equation.)
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23

1/2

0

2 1.(1 )
t

dx
x lnx

 −  +   
   

∫
In fact, the curvature k for the axis of rotation of a  black hole 

toy model with function ( ) ( )

2
1 f t

ln t
 

=   
 

is

( ) ( )

( )( )
( )( ) ( )( )

( )

( )

4 32 2

3/2 3/22 23

6 2

''
  

1 ' 2 11

t ln t t ln tf t
k t

f t

t ln t

+

= =
   +   −    +        

After employing Taylor Expansion by Mathematica (licensed 
Home Edition), we may get:
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= 0.75 + 0.25t(ln(t))-0.28125t8(ln(t))2-0.09375t9(ln(t))6  
Let f(t)=0.75+ 0.25t(ln(t)) – 0.28125t8(ln(t))2 - 0.09375t9(ln(t))6 

and let y = ln(t), then 
f(t,y) = 0.75 + 0.25t*y – 0.28125t8y2 – 0.09375t9y6

Solving by Mathematica (Home Liscensed version), we may 
get:

-1.25713 < t < -1.13027 or t < -1.25713 or t > -0.0902479.
As t > -1.25713 or t < -1.25713, this may imply t = -1.25713 

and y = 0.2288+3.1415i. In fact, the complex value of y will 
give f(t) an imaginary-valued space curvature. This may be used 
to model the black hole’s electromagnetic field. Furthermore, it 
may be theoretically possible to model the information contained 
in the associated high-frequency electromagnetic waves or 
radiation. We may also potentially decode the information from 
the emitted electromagnetic radiation. If the function contains 
complex variables, this implies that f(t) satisfies the Cauchy-
Riemann equations or represents a mirrored image inverse. 
Indeed, f(t) may be a holomorphic function, which is analytic 
and infinitely differentiable.
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. I.e. When t = ∞, the minimal curvature 
of the black hole toy model is: k = 0.

As the parametric equation √(1+[f'(x)]2 ) is a planar curve, its 
torsion should be zero.

To delve deeper, for each level of non-trivial zeta zeros, 
there may exist a boundary between the non-trivial zeta zeros 
or a continuum (which requires further investigation beyond 
the current focus) around the bounded rectangle of each zeta 
zero for the proposed electromagnetic fields, as shown in the 
diagram:

In practice, the electromagnetic boundary over the above ξi 
& ξj will be defined by the contour path integral around each 
individual ξi & ξj. We can intuitively express this as:
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where I is the imaginary number √(-1) and ξi, ξj are those non-
trival zeros [14] that give out 2iπI and 2jπI.

where εi  and εj  are the permittivities at the layers with zeta 
zeros ξi and ξj. We can also consider these integral numbers “i” 
and “j” as a form of quantization, as the electromagnetic field 
is, in fact, quantized. Furthermore, we may use these integral 
numbers as starting points to formulate a theory of quantum 
gravity. In fact, we may bridge the gap between quantized 
electromagnetic fields [49] and the area of quantized (black 
hole) gravity, similar to the case of 2 , ,x y zj

k
L

π
=

where jx,y,z = ±1, ±2, ±3, ±4, ±5, … ±∞ and L is the 
length, k is the wave vector. In practice, as I have shown the 
existence of the magnetic monopoles around my black-hole toy 
model, according to the Maxwell’s equation, there are also a 
Dirac strings. At the same time, the Dirac string can act as a 
solenoid in the Aharonov-Bohm effect, which implies the Dirac 
quantization rule:

“The product of a magnetic charge and an electric charge 
must always be an integeral multiple of 

2
n .”

Thus, with reference to the above contour path integral of 
( )
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=  where the constant k can be divided by 2
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Or           
12

k n k=


where k1 is an integer just like the above wave vector.
Indeed, the quantized vector potential, the electric field and 

the magnetic field are:
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In practice, if we can establish an analogous model between 
the quantization of the gravitational field and the quantization 
of the electromagnetic field, then we can naturally quantize 
(black hole) gravity using the quantized electromagnetic field 
equations. Let us first quantize the Einstein field equations using 
the electromagnetic stress-energy tensor as follows:

Figure 3: The mirror inverted cone (or the black hole toy model) with 
the non-trivial zeta zeros as the different quantized levels.
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In an usual situation, the electromagnetic stress-energy tensor 
is linear or
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where the energy-stress tensor can be quantized [50]. But 
the electromagnetic stress-energy tensor (decomposition) can 
also be expressed as the linear combination/regression of the 
following:
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For the non-linear case of the electromagnetic stress-energy 
tensor, according to [51] & [52], we may have the following 
revised tensor:
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In fact, the non-linear electromagnetic energy-stress tensor is:
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When we equate the Einstein Relativity Field Equation, one 
may get:
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Similarly, we may find the wanted electromagnetic anological 
energy-stress tensor model that is equivalent to (i.e. expressed 
in terms of) (gravitational) metric tensor as:
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In the mirror image reverse way, we may find the gravitational 
metric tensor by:
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This author wishes to note something interesting: the inverse 
of the metric tensor multiplied by the electromagnetic tensor, 
or the mirror image converse, will still yield the same result—a 
zero vector—since these two tensors are complementary to each 
other in terms of their zero entries (linearly dependent rows/
columns for the electromagnetic field tensor). Therefore, we 
cannot use the primal-dual simplex method, which expresses 
the potential for both the electromagnetic field and gravitational 
field in terms of matrices or tensors. We cannot simply multiply 
the matrix of the gravitational potential (Vgrav) or the metric 
tensor by the inverse of the matrix of the electromagnetic 
potential (Velec). The resulting matrix may then be approximated 
using this author’s HKLam statistical model theory to obtain 
the desired linear regression model. Finally, we may achieve 
an analogous quantized model for the expected gravitational 
potential energy.
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can also be approximated by HKLam Theory.
By the Completing Square Method, we may have:
1/2 (E2 – B2) = 1/2 [(E – B)2 + 2E·B - 2B2]g(μν)

The equation will attain its minimum when E = B. Hence, the 
energy-stress equation is reduced to:
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∂ ∂ , then the above equation is a zero and is a minimum 
for the (gravitational) metric tensor gμν equation expression. 
This fact implies the quantization of the electromagnetic field 
may also help us quantize the metric tensor gμν according to the 
quantized values of A

x
µ
λ

∂
∂

. Or according to the quantized vector 
potential equation ( ) ( )( †
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practice, the linear regression model (initial starting point or the 
pioneer) for the (quantized) gμν is:
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i.e. We may need to find the optimal value for the above 
regression model [53] and then solve the corresponding partial 
differential equations such as

Aλ = (εopt_1-1)xμ + ci or  Aμ = (εopt_2-1)xλ + cj. Or a pair of 
the business primal-dual in the simplex method. If we further 
suppose there was a radiation field that looks as a plane wave 

and propagates in the z-direction and is linearly polarized in the 
x-direction, then the real part of the 4-potential plane wave is:

Aμ = f(z – t) (0,1,0,0) [55] & [56].
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and hence we may reconstruct the corresponding (quantized) 
geometric spacetime [57]. According to the implications or 
proporties of the Dirac (quantum) equation that there should 
be a pair of electron-positron couple, hence the aformentioned 
tensor decomposed spinor equation for the positron will be also 
true as follow:
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Actually, we can quantize the potential of the plane wave, 
referring to the results in [58]. Clearly, the paired electron-
positron spinor equation may occur at the boundary of the black 
hole's event horizon or in the context of quantum entanglement 
phenomena. This author’s results show that only electron pairs 
will be found under the electromagnetic field of my toy black 
hole model. The black hole may be swallowing the negative 
part of the electron-positron pair and losing mass due to the 
electron’s negative energy. This finding is consistent with the 
predictions of the famous Hawking Information Paradox. In fact, 
the quantum no-hair theory may help resolve such a paradox.

Conversely, one may compute the value of the metric tensor 
gμν by observationally counting the number of boundary 
electrons from my HKLam statistical linear regression model, 
as presented above. This allows us to derive the quantized 
layers of gμν (as shown in Figure 2). In reality, we can obtain 
the optimal values of the above tensors based on the conceptual 
biological experiments mentioned in [54].

This author’s HKLam statistical model theory computation 
suggests that we can express the Einstein Gravitational 
Field Equation in terms of a (non-)linear combination/
regression model equation, as there is also a non-linear type 
of electromagnetic stress-energy tensor. If the non-linear type 
of electromagnetic stress-energy tensor can also be quantized 
[50], then we will have successfully quantized the Einstein 
Gravitational Field Equation and established the corresponding 
analogous gravitational field equation model according to the 
quantization of the electromagnetic stress-energy tensor. (This 
author notes that non-linear regression can be converted into 
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a linear form by taking the logarithm.) It is also true that the 
mirror image converse of the above model holds if we already 
know the gravitational field equation model, by reversing the 
matrix/tensor computation process.

In brief, observations indicate that there are quantum 
entanglements around the black hole's horizon, resembling a 
kind of butterfly effect or Lorenz chaos. In this context, this 
author suggests that we may apply my HKLam statistical 
model theory for further investigation whenever sufficient 
observational data are available.
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by decomposing each of the vector entry addition terms to 

form the individual entries of the desired electromagnetic stress-
energy tensor. The similar mirror image processes continue until 
an optimal value of the modified electromagnetic stress-energy 
tensor is obtained. Finally, we can solve the Einstein Field 
Equation in a novel way by repeating the mathematical Taylor 
approximation procedure, as shown in the aforementioned 
section. In fact, such an optimal value may be achieved using 
the gradient descent procedure in conjunction with commercial 
mathematical software—Matlab—for both linear and non-
linear optimization problems. However, such computations 
may fall within the field of engineering, which is beyond the 
focus of the present paper. This author may present the physical 
computations for the famous mathematical—Naviers-Stokes 
Equation problem when time or conditions permit, or if there 
are interested parties.

Actually, by considering,
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which may be transformed into a Diric Equation.
When we take 2 tmc

θ
= , then we may get the wanted Diric 

Equation of the Gravitational plane wave:

( )
2mci t k

A t e
λ

 
± +  
 Ψ = 

But according to the Einstein mass-energy equation – E = mc2, 
then we may obtain:
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Obviously, the above equation can be considered as an energy 
spectrum or a quantization through a suitable Fourier transform 
as well as a suggestion for the need of a quantization of time.

By reconsidering
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which may show the existence of the graviton as the einπ appears 
in the above tensor matrix while (einπ)2 may be decomposed into 
two gravitons. But in some case, graviton is just its anti-particle; 
hence these two gravitons may be a pair of graviton and anti-
graviton.

Moreover, with reference to [59], we may have only:
{Aλ(x,t), πλ(y,t)}D = δ(x-y) 
	 and 
{Aμ(x,t), πμ(y,t)}D = δ(x-y)
which is a kind of Dirac Quantization of Free Electrodynamics.
In brief, there may be a stress-energy tensor along with the 

electromagnetic field tensor applied in the mathematics of 
General Relativity. In this author’s opinion, one can use both the 
forward and the mirror image reverse components to compute 
these tensors for calculating the solutions (various types) of 
the Einstein General Relativity Field Equation. The author 
has already demonstrated this method in the aforementioned 
sections and will not repeat it here. Last but not least, for all 
types of tensors, we can apply the HKLam statistical theory 
(both the forward and the mirror image reverse components) 
to obtain a linear regression/combination model for further 
research or study.

	 To go ahead step, we may consider:
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which is just a gravitational redshift and Δλ/λ can be measured 
by observation and finally get the change in the metric tensor. 
Hence, we may quantize the space practically for:

( )
i j

k l
ij k l

x xg x dy dy
y y
∂ ∂
∂ ∂

In practice, this author suggests that we may reduce the high 
dimensional tensor by tensor decomposition and apply the 
gradient descent momentum of the Heavy Ball Method to find 
a optimized minimum as well as the space quantization like 
below:

xt+1 = xt - α∇f(xt) + β(xt – xt-1)
Actually, the quantum gravity is not concerning the 

quantization of the gravity but it is something about the 
quantizing of the space-time metric.

Or we may have the following algorithm / steps:	
1.	 Apply the gradient descent to obtain the minimum / 

optimum metric tensor vector in the sense of data linear 
regression – an optimization process for the statistical 
linear regression data;

2.	 Combine and transform the metric tensor (that observed 
from the gravitational waves data) into the wanted one;

3.	 Apply the gradient descent to the optimum transformed 
metric tensor and find the best solution to the tensor 
equation Ax = b;

4.	 Decompose the transformed metric tensor into a low 
dimensional one;

5.	 Use my HKLam statistical model theory to obtain the 
corresponding (tensor) linear regression model and 
get the corresponding quantization or data clustering 
for the such particular space time from the observed 
Gravitational waves.;

In fact, according to Stokes' theorem, the line integral of a 
vector field is equal to the surface integral of the curl of that 
field over a surface bounded by a closed curve. If, in addition, 
the vector field is conservative, then the integral around the 
closed loop must be zero. Since the winding number of the 
contour integral is a multiple of 2π, the surface bounded by the 
prescribed curve has an undefined vector field at the non-trivial 
zero (say ξi) for the function 1/ζ(z). In its mirror image reverse, 
the contour integral around ξi (or ξj etc.) for the function ζ(z) 
is zero, indicating that it is a conservative vector field. For a 
conservative vector field, it is indeed the gradient of some 
function (say ∇f). If we let the gradient of this function be 
P=∇f, it is known as the scalar potential. If we can find such a 
scalar potential P, we can determine the desired electric current 
I=ΔUI (or P). In practice, the electric charge itself is quantized, 
while each contour integral of the non-trivial zeta zeros for the 
function 1/ζ(z) is also quantized by the ratio i/j for some ξi, ξj, 
etc.

At the same time, there may be a magnetic monopole existing 
between two consecutive ξi and ξj since the contour integral is 
always zero, or ∇⋅B=0. (In practice, rather than the engineering 
interpretation in the theoretical discussion of black-hole battery 
feasibility, the above zeta (ξ) function, together with 1/ζ(ξ), 
forms a philosophical pair or a “duality,” or, academically, the 
primal and dual problem of our simplex method in operational 
research [50-52].) However, there is no evidence of such 
monopoles in our currently known physical world, which 
may lead to a contradiction. Thus, either the implication of 
∇⋅B=0 or ∮B⋅ dA = 0 is incorrect, indicating that the existence 

of a monopole or the computed Riemann non-trivial zeros is 
flawed. (N.B. In fact, the electric monopole does exist, but 
not the magnetic one. If a magnetic monopole were to exist, 
we would need to rewrite Maxwell's equations due to their 
incompleteness.) Theoretically, under high electromagnetic 
field conditions (along with electrodynamics theory) around the 
boundary of this author’s toy black hole model, there may be 
a Schwinger effect occurring between the two non-trivial zeta 
roots, say ξi and ξj. According to [45], magnetic monopoles 
may also arise from the dual Schwinger effect under strong 
magnetic fields. Hence, in this author’s toy black hole model, 
I have demonstrated the occurrence of magnetic monopoles 
in certain boundaries or areas. Ultimately, we may achieve a 
unified picture for the Schwinger effect, Hawking radiation, 
the gauge-gravity relation, and the dS/AdS duality issue, etc. 
[46]. This author wishes to clarify that the Schwinger effect is a 
phenomenon under high electromagnetic fields where positron-
electron pairs are emitted.

(N.B. With reference to the rectangle of the boundary area in 
Diagram 3 and the integral form of Maxwell’s equations, we 
may have:

∲E·dA = (1/ε0)∫ ρ dv implies 
∲ ξi Pdx +Qdy = 2πi and 
∲ ξj Pdx +Qdy = 2πj

Hence, ( )
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1
2 .1 2
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j jdz
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ξ

π
π

=
∫

∫


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嚀

Moreover, based on the above results and the integral form of 
Maxwell’s equations, there exists a space charge or a collection 
of excess electric charge around the boundary of any ξi within 
the prescribed rectangular curvature. This can be treated as a 
continuum of charge distributed in that particular region of 
space. Furthermore, the electric charge ratio for the

where εi & εj are the permittivity at the layer with zeta zeros 
ξi and ξj

In addition, there are also the level curves’ layers that are 
projected from the above mirror inverted cone diagram:

 Mathematica Code for generating: 
 
ContourPlot3D[x^2 + z^2, {x, -25, 25}, 
{y, 0, 25}, {z, 0, 25},  
 Contours -> {Im[N[ZetaZero[1]]], 
Im[N[ZetaZero[11]]],  
   Im[N[ZetaZero[25]]]}, AxesLabel -> 
{x, y, z}, MaxRecursion -> 2] 

Figure 4. The layered level curves that is projected from the mir-
ror image inverted black hole toy model (or the inverted cone or the 

layered spherical black hole model) – may be further extended for the 
quantization of the model as well as the relation to the present (quan-

tum) information entropy theory.
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Conclusions - A Disproof to the Unification of Classical 
Quantum Mechanics & General Relativity

In reality, quantum mechanics and general relativity arise 
from two different perspectives: the classical (Newtonian) 
absolute time frame of reference and the relative time frame of 
reference. These two perspectives are inherently inconsistent. 
Indeed, from classical quantum mechanics, we can cross over 
with Galilean relativity to obtain the desired (Galilean type) 
quantum gravity. This means one can take a further step to 
achieve the gravitational effects relevant to the quantization 
of low-speed particles or non-light-speed particles (i.e., 
quantum gravity for low-speed particles). Specifically, Galilean 
quantum field theory can be applied as a framework that 
combines classical field theory, Galilean relativity, and quantum 
mechanics. Simultaneously, there is also a relativistic quantum 
mechanics for (near) light-speed particles within the context of 
special relativity. One can advance further to obtain relativistic 
quantum mechanics for (near) light-speed particles in curved 
space and time, incorporating the effects of gravity—this is 
referred to as parametrized relativistic quantum mechanics [6] 
or even the pursuit of quantum gravity for (near) light-speed 
particles. Quantum field theory attempts to act as a framework 
that unites classical field theory, special relativity, and quantum 
mechanics. Thus, one can compare and contrast both Galilean 
quantum field theory (GQFT) and quantum field theory (QFT) 
[11]. In fact, the above results are consistent with the principles 
of Lorentz transformation, which is an essential component 
applied in Einstein’s (special) relativity [7]:

2

2

'

'

vxt t
c

or
vxt t
c

γ

γ

 = − 
 

 = + 
 

where the above equations will reduce to the Galilean t = t’ 
when x << ct together with v << c. We may assume both of 
ct/x and c/v equal to some big “M(s)” [9] by employing the 
technique(s) of business operational research in management or 
infinity for the Lorentz Transformation, i.e.

( )

( )

1

2

 1*

  2*

an

ct M
x

c M

d

v

= − − − − − − − − − − −

= − − − − − − − − − − −

where M1 and M2 are some very large numbers [10]. One may 
solve the above equations (1*) & (2*) into a partial differential 
equation with variables x and t. 

Finally, we may solve the partial D.E. and have: 
(1*) divided by (2*)

( )( )

( ) ( )

( )
1

2

1

2

2 1

2 1

2 1

  3*
M
M

Mtv
x M
M v M

x t
M Mx
x t t

M ln x M ln t

x t k

=

=

∂
=

∂
∂ = ∂

= − − − − − − −+ −

Then, in this context, Galilean relativity can advance further to 
merge with the desired classical quantum mechanics equations 
and thereby obtain the sought-after quantum gravity. In fact, 
M1 and M2 represent two different large numbers derived from 
the application of business operational research management 
methods, akin to the big-M method in one and two stages.

Indeed, the equation for the Galilean transformation of 
coordinates is:

( )'  4*s
s

xv v
t
= − − − − −= −

(for x’ = 0 and s, s’ are two coordinate systems that used in 
Galilean Relativity).

Substitute (3*) into the (4*), one may obtain:

( )
1

2
1

'  5*
M
M

s
s

kv v t
t

−

= − − − −= + −

where (5*) may be the elementary conversion equation between 
the  Lorentz Transformation and Galilean Transformation.

Then with reference to [30], we may have the Lorentz 
factor -- 2

2

1

1 v
c

γ =
−  we may get the following home edition licensed 

Mathematica scripts [30] & [31] together with some computed 
results:

Case I: For the zero-th ordered approximation,
Script Input:
y = 1/Sqrt[1 - v2/c2]
Series[y (x - vt), {v, 0, 0}]
Series[y (t - v/c2 x), {v, 0, 0}]

Result Output:
(-vt + x) + O[v]1

t + O[v]1

Hence, the result after the substitution may be:
x’ = x, t’ = t, but 1

2  
M
Mx t=  for the x-coordinate

Case II: For the first ordered approximation, 
Script Input:
y = 1/Sqrt[1 - v2/c2]
Series[y (x - vt), {v, 0, 1}]
Series[y (t - v/c2 x), {v, 0, 1}]

Result Output:
-(vt + x) + O[v]2

t - (x v)/c2 + O[v]2

Hence, the result after the substitution 
1

2  
M
M kv t

t
+=  may be:

( )
1

2
1

2’   /( )
M
M kt t x t c

t

−

= +−  for the t-coordinate.

The aforementioned x′ and t′ may represent the precise 
or adjusted Taylor approximations of the x-coordinate 
and t-coordinate for the Galilean transformation [30]. To 
take a further step, we can compute the surface area or the 
electromagnetic flux by evaluating the line contour integral of 
the transformation using Green’s theorem or Stokes' theorem. 
This implies that by computing the inverse of the above Taylor 
series [33], we obtain the corresponding contour line integral:
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or -((2 c2 t)/x),
i.e ( )

1

2
1

22 )/ ( 
M
M kc t

t

−

+

for 0  < Ɵ < π, k is an integral constant.
Then, by applying Stokes' theorem, the result corresponds to 

the desired surface area or even the electromagnetic flux [32] 
for the Galilean transformation. In fact, according to Stokes' 
theorem, integrating the summation of all small pieces of these 
areas provides us with the corresponding line contour integral.

One may also observe that the elementary transformed 
velocity in Galilean relativity corresponds to the power indices 
for the ratio between the two large numbers minus 1, or 1

2

1M
M

− of 
the time t. 

In fact,

1 1

2 2

1

2

'                    0

  

(

'

)

'  

,
M M
M M

M
M

x x vt x t k for t otherwise

x x vt x t k

or
= − = − + ≠ =

= + = + +

This implies that the paired equations are akin to the famous 
words of English poet and painter William Blake, who said, “I 
am in you, and you in me.” We may theoretically quantize gravity 
according to Galilean relativity, referencing classical quantum 
mechanics within the absolute time frame, but we cannot 
quantize gravity using general relativity without appropriate 
conversion equations, as illustrated in the formula (5*). It is true 
that Galilean transformations provide a good approximation of 
Lorentz transformations when particles are moving at speeds 
lower than that of light. However, the key distinction between 
these two transformations lies in the absolute versus relative 
time reference frames. Therefore, we cannot unify quantum 
mechanics with general relativity.

Moreover, both quantum mechanics and Galilean 
transformations (or relativity) operate effectively under an 
absolute time frame, allowing us to derive the desired Galilean 
quantum gravity by addressing the incompatibility between 
these two time reference frames. To tackle this incompatibility, 
the focus should be on developing a conversion equation that 
bridges these two types of time reference frames. By doing so, 
we can reconcile the differences between them and transform 
the Galilean quantum gravity formula into the desired quantum 
gravity formula consistent with general relativity. Thus, we do 
not need to dwell solely on the incompatibility between these two 
time reference frames or the fact that the Galilean transformation 
is a good approximation of the Lorentz transformation for low-
speed particles. Instead, we should concentrate on my proposed 
transformation conversion equations, utilizing the Big-M 
method from business operational management.

 (N.B. 1. When M1 → 1 and M2 → 1, where M1≠M2, the 
Galilean transformation will revert to the Lorentz transformation. 
Therefore, I propose naming the ratioM1/M2  as the Galilean-
Lorentz Conversion Power Indices or GLCPI.

2. In fact, for Einstein’s twin paradox, there may be an implicit 
or hidden (universal or Newtonian) absolute time in both twins’ 
perspectives. For sister A, who stays on the rocket, the Earth 
appears to move backward and become smaller relative to her. 
However, from sister A’s perspective, she is stationary and 
has her own absolute time relative to the absolute universe or 

Newton’s framework. Similarly, for sister B on Earth, she is 
stationary and has her own absolute time relative to the same 
universal standard. This can be expressed as:

RelTimeA
AbsoluteUniverseTime

RelTimeB
AbsoluteUniverseTime

where the absolute universe time may effectively cancel 
out in practice. Indeed, I understand that a quantum field 
theory for time could potentially be the final answer for the 
present research. However, time and space cannot currently be 
quantified using constants like Planck’s constant for them to be 
quantized. Therefore, it is not feasible to assert that unification 
between quantum mechanics and general relativity is possible 
unless there is a breakthrough in the quantization of both space 
and time. In other words, the twin paradox problem may have 
connections to metaphysics and our studies in areas such as 
ontology, cosmology, and epistemology. It is worth noting that 
Einstein was, in practice, a philosophical scientist who differed 
from other scientific physicists of his time in the early to mid-
20th century.

3. In reality, one may consider Galilean transformations as 
a control experiment for Lorentz transformations or Einstein’s 
general relativity [20].

In brief, this author proposes the following algorithm for the 
quantization to the gravity:

1.	 Quantize gravity using both quantum mechanics and 
Galilean relativity through Galilean Quantum Field 
Theory (GQFT).

2.	 Convert Galilean relativity (transformation) to Einstein’s 
special relativity (Lorentz transformation) using the 
conversion formula, noting the limits as M1 → 1 and M2 
→ 1;

3.	 Obtain the corresponding quantized gravity in Lorentz 
transformation from the previous conversion, referencing 
Quantum Field Theory (QFT).

4.	 Parametrize the computed quantum gravity (for general 
relativity) in curved space and time [6].

5.	 Finalize the desired quantum gravity model/equation.

However, if one insists on generalizing or unifying classical 
quantum mechanics with general relativity—or even aiming 
for a theory of everything—without any conversion, as in the 
Galilean-Lorentz Conversion Power Indices (GLCPI), this 
author suggests that the feasibility of such unification may be 
nonexistent. This is due to the conflicts between the assumptions 
of absolute time reference and relative time reference; they are 
simply not practically unified or compatible with these two 
contradictory perspectives. Only by developing a completely 
new view—perhaps a hybrid of absolute and relative time 
frames, similar to the cosmic microwave background rest 
frame or a universal frame—might one find opportunities for 
unification between classical mechanics and general relativity. 
In such a case, this author foresees that a new perspective 
could lead to the creation of a completely new theory, rather 
than becoming mired in the complexities of unifying classical 
quantum mechanics and general relativity.
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Limitations and Suggestions
In this paper, the author may propose a way to quantize a toy 

model of the black hole by using a computer programming code. 
Hence, it may become easier or serve as a pioneer for those 
advanced researchers to quantize a real black hole. As it is well-
known, one of the applications of quantum gravity (equation) 
may be the quantization of black holes. Thus, the present paper 
may, in a mirror reverse way, provide a method or background 
to help those interested scientists seek the wanted quantum 
gravity equation(s)/formulae. My suggestion is to make as much 
observational data as possible (especially from the gravitational 
wave data of various black hole(s)), together with machine 
learning and data mining methods, to compute the expected 
QG equation(s), model(s), or patterns. That is to say, one may 
need to set up a computer and information system in order to 
achieve advanced data processing for the LIGO data. It is no 
doubt that under the present technology, we may NOT have the 
ability to measure, find, or capture the expected graviton from 
the gravitational waves [12]. On the contrary, what we already 
know is the relationship between gravity, gravitational waves, 
and quantization from LIGO’s observational data as detected 
[13]. Then we may compare this with the theoretical results 
obtained from the algorithm in the aforementioned conclusion 
section, make the necessary and essential adjustments, and 
hence generate some more accurate or indirect results. Certainly, 
the proposal of a fifth force, as discussed in my previous paper 
[62], may help establish the relationship between cosmic energy 
and black holes, or even explain the incompatibilities between 
general relativity and quantum mechanics, etc.
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