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Introduction
The field of cryptography has undergone 

significant transformations over the 
past decades, evolving from simple 
substitution ciphers to advanced public-
key cryptographic systems like RSA and 
ECC. These systems, foundational to 
modern secure communications, derive 
their security from mathematical problems 
that are computationally infeasible to solve 
using classical methods. However, quantum 
computing introduces a paradigm shift, posing 
unprecedented challenges to these classical 
cryptographic systems.

Quantum computers, leveraging principles 
of quantum mechanics, are capable of 
executing algorithms such as Shor’s [1] 
and Grover’s [2], which render traditional 
cryptosystems like RSA and ECC obsolete by 
efficiently solving the factoring and discrete 
logarithm problems. This looming threat 
necessitates the development of cryptographic 
schemes that can resist both classical and 
quantum adversaries.

Among these post-quantum candidates, 
lattice-based cryptography has emerged 
as a promising solution due to its reliance 
on hard mathematical problems like the 
Shortest Vector Problem (SVP) and Closest 
Vector Problem (CVP) [3,4]. Specifically, 
NTRUEncrypt offers a compelling balance 
between computational efficiency and robust 
security. Its algebraic structure, based on 
truncated polynomial rings modulo XN − 1, 
enables efficient polynomial arithmetic while 
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maintaining strong cryptographic guarantees 
[5,6]. 
Context and motivation

The rapid advancements in quantum 
computing, sup- ported by substantial 
investments from governments (e.g., NIST 
post-quantum initiatives [7]) and private 
sectors (e.g., Google’s quantum supremacy 
experiments), indicate that practical quantum 
computers capable of breaking RSA and ECC 
could become a reality within decades. This 
poses significant risks to industries reliant on 
secure communications, including finance, 
healthcare, and national defense. Recent work 
has highlighted these concerns, particularly 
in IoT systems, where the need for quantum-
resistant security must be balanced with 
resource constraints [8].

Lattice-based cryptography, particularly 
NTRUEncrypt, has gained prominence due 
to its strong theoretical foundations and 
practical efficiency. By relying on the hardness 
of lattice problems like SVP and CVP [3,9], 
NTRUEncrypt offers inherent resistance to 
quantum attacks, making it a key candidate for 
post-quantum cryptographic standards.
State of the art

Significant progress in lattice-based 
cryptography has bolstered its viability as a 
post-quantum solution. Recent studies have 
demonstrated the effectiveness of NTRU- 
Encrypt across varying polynomial degrees and 
lattice dimensions [10], [11]. For example:
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•	 Integration of bimodal Gaussian sampling techniques 
[12] has improved key generation efficiency

•	 Utilization of Learning With Errors (LWE)-based 
hardness assumptions [13] has enhanced theoretical 
underpinnings.

Lattice-based cryptography builds on the hardness of 
fundamental problems like the Shortest Vector Problem (SVP) 
and Closest Vector Problem (CVP), which are closely related to 
the Learning With Errors (LWE) problem [19]. These problems 
are known for their worst-case to average-case reductions, 
making them attractive for cryptographic constructions.

However, gaps remain in parameter optimization [14] and 
real-world performance analysis under quantum adversaries. 
For instance, configurations with N = 256 provide lightweight 
security suitable for embedded systems, while N = 1024 offers 
robust protection for high- security applications [15].
Research objectives

This work seeks to address these gaps by introducing a novel 
probabilistic framework for evaluating and enhancing the 
security of NTRUEncrypt. Specifically, we lever- age Markov 
Chain Monte Carlo (MCMC) methods [16,17] to analyze key 
space vulnerabilities and optimize parameters for quantum 
resistance.

This paper focuses on three critical objectives:
•	 Parameter Optimization: Identifying configurations that 

balance security and computational efficiency across 
varying security levels.

•	 Efficient Key Generation: Leveraging MCMC methods 
for robust and efficient key sampling.

•	 Quantum Security Assessment: Providing quantitative 
metrics to evaluate resistance against quantum 
adversaries.

Contributions
The main contributions of this paper are as follows:
1.	 A comprehensive analysis of NTRUEncrypt security 

across four distinct parameter sets (N = 256, 512, 768, 
1024).

2.	 A novel MCMC sampling framework with proven 
convergence properties for lattice-based cryptosystems.

3.	 Extensive numerical experiments validating 
theoretical findings and identifying practical parameter 
configurations.

4.	 Concrete security estimates that integrate lat- tice 
hardness assumptions to enhance robustness against 
quantum attacks [19].

Paper organization
The remainder of this paper is structured as follows:
1.	 Section II: Mathematical foundations of NTRUEncrypt.
2.	 Section III: Theoretical analysis of MCMC sam- pling 

methods.
3.	 Section IV: Numerical experiments validating the 

proposed framework.
4.	 Section V: Practical implications for real-world 

implementations.
5.	 Section VI: Conclusion and future research directions.

Mathematical foundations
Cryptosystems like NTRUEncrypt derive their security 

from deep mathematical properties of lattices and polynomial 
rings. This section explores the algebraic structures and lattice-
theoretic foundations that underpin NTRUEncrypt’s robustness 
against quantum and classical attacks [4].

Algebraic structure of NTRUEncrypt
NTRUEncrypt operates in the ring of truncated polynomials 

[ ] / ( 1)NR X X= −

 where polynomials take the form:
c0 + c1X + c2X

2 + · · · + cN−2XN−2 + cN−1XN−1

with integer coefficients [5,11]
Key Properties of R:

•	 Ring Operations: Addition and multiplication are 
performed modulo XN − 1

•	 Modular Structure: Operations in [ ] / ( 1)N
q qR X X= −  

ensure efficient computation
•	 Ideal Properties: The structure of ⟨XN − 1, q⟩ 

facilitates secure parameter selection
Hardness of lattice problems

Trapdoors for hard lattices, as introduced by Gentry et al. [20], 
have enabled new cryptographic constructions that leverage 
the algebraic properties of lattices. These constructions have 
significantly improved the practicality and security of lattice-
based cryptosystems. The security relies on two fundamental 
problems [3,9];

Theorem 1 (SVP Hardness). Finding the shortest non- zero 
vector in a lattice of dimension N requires time at least 2Ω(N) 
under standard cryptographic assumptions.

For practical implementations, lattice reduction esti- mates 
suggest [14]:

Security Level = 2Ω(N/ log N)

Parameter optimization
MCMC sampling parameters significantly impact security 

[17]:

sec (log )
logurity
No poly N

N
 

γ =   α 
where α controls the Gaussian distribution width for sampling.

Theoretical analysis
This section provides a detailed theoretical analysis of the 

proposed NTRU lattice sampling algorithm. We explore the 
convergence properties of Markov Chain Monte Carlo (MCMC) 
methods, establish quantum security bounds, and analyze 
computational complexity to optimize parameters for balancing 
security and efficiency [17].
MCMC convergence analysis

Markov Chain Monte Carlo (MCMC) methods play a critical 
role in efficient key generation and sampling for cryptographic 
systems [16]. These methods probabilistically explore the 
key space, ensuring uniformity in parameter selection while 
achieving convergence to a stationary distribution.

Fundamental convergence properties: For lattice Gaussian 
sampling, the convergence rate is characterized by the spectral 
gap of the transition matrix [17].
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Theorem 2 (MCMC convergence rate). For an NTRU lattice 
sampling algorithm with dimension N, the mixing time satisfies:

 ( ) 2 log(1/ ),mix CNτ ∈ ≤ ∈
where C depends on the minimal energy gap and the spectral 

radius of the forward operator [17].
Quantum security analysis

The security analysis must consider both classical and 
quantum adversaries [9]. Using lattice reduction estimates [14], 
we establish:

Theorem 3 (Quantum security bounds). For an NTR

sec
)

2
(

N

urityQ
Vol B

 
= Ω  

 

where Bα represents lattice vectors with norms bounded by α 
[4].

These bounds demonstrate the trade-off between security and 
sampling efficiency shown in the experimental results.
Complexity analysis

The complexity analysis follows from the MCMC convergence 
properties [17]:

Theorem 4 (Time-space complexity). The MCMC sampling 
algorithm achieves:

1)	 Time complexity: 3( log log(1/ ))totalT O N N= ∈  
2)	 Space complexity: Stotal = O(N2)
under optimal parameter selection [3].
These theoretical results support the empirical obser- vations 

shown in the norm distribution and convergence graphs, 
particularly the relationship between dimension N and sampling 
efficiency.
MCMC sampling algorithms

We present the key algorithms used to generate and analyze 
the norm distributions and convergence behavior shown in 
Figure 1. These algorithms build upon established MCMC 
methods for lattice Gaussian sampling [17].

Theorem 5 (MCMC convergence). For lattice dimension N 
and Gaussian parameter σ, the mixing time satisfies:

2 log(1/ )mix CNτ ≤ ∈

where C depends on the spectral radius of the forward operator 
[16,17]
Lattice Gaussian sampling

The independent Metropolis-Hastings-Klein algo- rithm [17] 

is implemented as follows:
Input:N, σ, iterations 
Output: Lattice Gaussian samples
 Initialize:  Nx 

 
for i = 1 to iterations

2 2

2 2

( )

if Uniform[0, 1] < :

return x

0,

min{1,exp( )}
2 2

y x Gaussian

Y X

x y

← + σ

←

←

α

α

− +
σ σ

Norm distribution analysis
Following the geometric ergodicity properties [17], we 

analyze the distributions:
Input: N, σ, sample size 
Output: Distribution statistics samples ← ∅
for i = 1 to sample size:
v ← MCMC Sampling(N, σ) 
norm ←   v   samples.append(norm)
peaks ← find peaks(samples) 
conv ← analyze mixing(samples) 
return peaks, conv

Security metric calculation
Based on lattice reduction estimates [14]:

Input: N, σ,Bα
Output: Qsecurity
vol ← compute volume(Bα)

sec

2 sec

2

log_sec log ( )

N

urity

urity

Q
vol

Q

←

←

Experimental analysis of sampling efficiency and 
quantum security

This section validates the theoretical framework 
introduced in Section III through numerical experiments. It 
explores the impact of different configurations on quantum 
security, sampling efficiency, and practical implications 
for NTRUEncrypt implementations, including detailed 
implementation, performance evaluation, and comparative 
analysis of the proposed MCMC sampling algorithm for NTRU 
lattices. Experimental results across five configurations of 
lattice dimensions (N ) and Gaussian parameters (σ) illustrate 
their influence on sampling behavior, convergence, and security 
metrics [17,18].
Key observations

The experimental results demonstrate distinct patterns in 
both norm distributions and convergence behavior for different 
configurations of N and σ. Based on Table I, three main 
configurations emerge:

•	 High Security (N = 1024, σ = 4.0): Achieves maximum 
quantum security (7.46×10301 bits) with bimodal 
distribution peaks at 129-131

•	 Balanced (N = 768, σ = 3.5): Provides excellent 

Figure 1. Illustration of MCMC convergence: The mixing time 
τmix represents the number of steps required for convergence to the 

stationary distribution.
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security-performance trade-off (7.47 × 10224 bits)
•	 Standard (N = 512, σ = 3.5): Offers adequate security 

(4.11 × 10127 bits) for general applications
Key implementation features include:

•	 Number of MCMC steps: 10,000, determined through 
convergence analysis [16]

•	 Metropolis-Hastings framework with acceptance 
probability:

2 2 2( ) min{1,exp( / 2 / 2P x y y x← = − σ + σ

Open-source code availability at	 : https://cocalc.com/share/
public paths/ df421c14d63bf8708fbe34dd9c3a534dd01c3889/ 
2024-12-29-file-1.ipynb [22]
Comparative analysis and practical implications

As shown in Figure 2, the relationship between σ and sampling 
behavior reveals crucial trade-offs:

1.	 Convergence characteristics
•	 σ = 4.2: Requires 4000 iterations, showing oscillations 

in the range 125-135
•	 σ = 4.5: Achieves faster convergence (3000 iterations) 

with slightly wider distribution

Configuration N σ Qsecurity 
(bits)

Log Quantum 
Security

Time Com-
plexity

Log Time 
Complexity Remarks

Baseline 256 2.5 3.72 × 1063 63.57 6.43 × 108 8.81 Extremely low security, unsuitable for 
any practical use

Configuration 2 256 3 2.73 × 1053 53.44 6.43 × 108 8.81 Very low security, unsuitable for 
quantum resistance

Configuration 3 256 3.5 7.36 × 1044 44.87 6.43 × 108 8.81 Insufficient security level for post-
quantum applications

Configuration 4 256 4 2.78 × 1037 37.44 6.43 × 108 8.81 Critical security weakness, not 
recommended

Configuration 5 256 4.5 7.87 × 1030 30.9 6.43 × 108 8.81 Extremely vulnerable to quantum 
attacks

Configuration 6 512 2.5 1.05 × 10165 165.02 5.78 × 109 9.76 Moderate security, but insufficient for 
long-term use

Configuration 7 512 3 5.65 × 10144 144.75 5.78 × 109 9.76 Acceptable for medium-security 
applications

Configuration 8 512 3.5 4.11 × 10127 127.61 5.78 × 109 9.76 Suitable for standard security 
requirements

Configuration 9 512 4 5.86 × 10112 112.77 5.78 × 109 9.76 Good balance of security and 
efficiency

Configuration 10 512 4.5 4.71 × 1099 99.67 5.78 × 109 9.76 Faster convergence but reduced 
security margin

Balanced 768 3.5 7.47 × 10224 224.87 2.08 × 1010 10.32 Excellent security-performance trade-
off

Configuration 11 768 4 4.02 × 10202 202.6 2.08 × 1010 10.32 High security with good efficiency

Configuration 12 768 4.5 9.16 × 10182 182.96 2.08 × 1010 10.32 Strong security with improved 
convergence

Optimized 1024 4 7.46 × 10301 301.87 5.14 × 1010 10.71 Maximum security, ideal for critical 
applications

High Efficiency 1024 4.5 4.81 × 10275 275.68 5.14 × 1010 10.71 Very high security with better 
performance

Configuration 12 1024 5 1.80 × 10252 252.25 5.14 × 1010 10.71 Strong security with optimal efficiency

Figure 2. Norm distributions and convergence behavior for N = 1024 
configurations, showing the impact of σ on sampling efficiency and 

security metrics.

Table 1. Comparison of Quantum Security Metrics for Different Configurations with Time Complexity and Logarithmic Metrics
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2.	 Security-performance balance
•	 Larger σ values improve sampling efficiency but 

increase lattice ball volume Vol(Bα)
•	 Smaller σ values ensure higher security at the cost of 

slower convergence
Comprehensive analysis of configurations

The relationship between quantum security (Qsecurity) and the 
Gaussian parameter σ across different lattice dimensions N is 
summarized in Figure 3. The results highlight key trade-offs 
between security and efficiency:

•	 Optimized configuration (N = 1024, σ = 4.0): Achieves 
the highest quantum security (7.46×10301 bits), ideal for 
high-security environments.

•	 Intermediate configuration (N = 768, σ = 3.5): 
Provides excellent security (7.47 × 10224 bits) with 
balanced performance.

•	 Standard configuration (N = 512, σ = 3.5): Offers 
moderate security (4.11×10127 bits) suitable for standard 
applications.

•	 Lower dimensions (N = 256, σ = 2.5): Provides 
insufficient security (3.72 ×1063 bits), suitable only for 
testing.

Selecting appropriate parameters is essential for balancing 
quantum security and computational efficiency in NTRUEncrypt 
implementations. Aligning with the objectives of parameter 
optimization for quantum resistance and practical deployment 
outlined in the introduction.
Conclusion

This study provides a foundational framework for 
understanding and improving NTRUEncrypt’s quantum 
resistance. By integrating MCMC methods with lattice 
cryptography [17], our results offer practical guidelines for 
parameter selection, secure implementations, and efficient 
key generation. These findings directly support ongoing 
standardization efforts for post-quantum cryptography [7].

The analysis demonstrates that parameter optimization is 
essential for balancing quantum security and computational 
efficiency [14]. For instance, configurations with N = 1024, σ 
= 4.0 achieve optimal security (7.46 × 10301 bits), while σ = 4.5 
provides enhanced performance with robust security (4.81×10275 
bits) [11]. Additionally, the Gaussian parameter σ significantly 
influences the lattice ball volume Vol(Bα), highlighting its 
exponential impact on security metrics [4].

Figure 3. Norm distributions and convergence behavior for N = 1024 
configurations, showing the impact of σ on sampling efficiency and 

security metrics.

Key contributions
Our work achieves several theoretical and practical 

advancements
Theoretical insights

•	 Rigorous quantum security bounds based on lattice 
reduction estimates [9]:

security
2Q
( )

N

Vol Bα

 
= Ω  

 

•	 Optimal MCMC sampling complexity with proven 
convergence [16]:

3( log log(1/ )totalT O N N= ∈

Practical recommendations
Our analysis shows that while N = 1024 configurations 

provide sub- stantial quantum resistance; lower dimensions may 
be vulnerable to advanced lattice attacks [21].
Future directions
Future research should focus on:

•	 Developing hardware-optimized implementations for 
resource-constrained environments [8]

•	 Extending this framework to other lattice-based 
cryptosystems

•	 Studying the impact of quantum computing advances on 
security parameters

•	 Exploring automated parameter optimization techniques
These results establish NTRUEncrypt as a promising 

candidate for post-quantum standardization [7], providing both 
theoretical security guarantees and practical implementation 
guidelines.
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