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Introduction
Parkinson’s disease (PD) is a gradually 

progressing neurodegenerative disorder that 
primarily impacts movement, speech, and 
motor functions due to the steady decline of 
dopamine-producing neurons in the brain. A 
notable symptom of PD is voice impairment, 
known as dysphonia, which is characterized by 
weakened vocal strength, speech tremors, and 
articulation difficulties. Traditional clinical 
assessments for PD rely on expert evaluation 
and physical examinations, which can be 
subjective, time-consuming, and inaccessible 
to many patients. As a result, there has been a 
growing interest in utilizing machine learning 
and artificial intelligence for early and 
accurate detection of PD using biomedical 
signals, particularly voice recordings. The 
dataset developed by Max little and his 
colleagues provide a crucial foundation for 
such research, as it includes multiple voice 
recordings from individuals with and without 
PD. By analyzing various vocal features, 
including fundamental frequency variation, 
jitter, shimmer, and harmonic-to-noise ratio, 
computational models can identify patterns 
associated with PD and differentiate affected 
individuals from healthy ones. This approach 
not only enhances diagnostic accuracy but 
also facilitates remote monitoring, making PD 
detection more accessible and efficient. 

Implementing this dataset in Parkinson’s 
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necessitating early detection for better treatment outcomes. This research proposes a machine learning-
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disease detection involves leveraging 
advanced machine learning techniques to 
extract meaningful insights from the voice 
recordings. By training models on labeled 
voice data, researchers can develop predictive 
algorithms capable of distinguishing between 
healthy individuals and those with PD based 
on subtle voice abnormalities. Techniques 
such as support vector machines (SVM), 
deep learning, and ensemble classifiers are 
commonly employed to enhance classification 
accuracy. Additionally, feature selection 
and dimensionality reduction methods are 
used to focus on the most relevant vocal 
characteristics, improving model performance 
while minimizing computational complexity. 
The integration of speech analysis with AI-
driven diagnostics offers a non-invasive and 
cost-effective solution for early PD detection, 
potentially allowing for timely medical 
intervention and improved patient outcomes. 
This dataset serves as a valuable resource for 
advancing telemedicine applications, enabling 
continuous monitoring of PD progression and 
response to treatment, ultimately improving the 
quality of life for affected individuals.
Related work

Parkinson’s disease (PD) is a progressive 
neurodegenerative condition that im-pacts 
both motor and non-motor functions. Machine 
learning techniques, including Support Vector 
Machines (SVM), Random Forest (RF), and 
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imaging-based PD detection, Highlighting major developments 
in the field. These studies emphasize the crucial role of Support 
Vector Machines (SVM), Random Forest (RF), and Decision 
Tree (DT) models in detecting Parkinson’s disease. Each 
approach has distinct strengths, with SVM excelling in margin-
based classification, RF effectively managing high-dimensional 
data, and DT offering interpretability. Combining speech and 
imaging data improves diagnostic accuracy, contributing to 
the development of more reliable and automated PD detection 
systems.
Proposed Method
Data Collection

•	 Image Data: MRI scans, CT scans, or spiral drawings 
from patients.

•	 Speech Data: Voice recordings from phonation tasks 
(sustained vowels, sentence reading).

•	 Dataset Sources: Public datasets like the UCI Parkinson’s 
dataset, spiral drawing datasets, or hospital records.

Preprocessing
Image Data:
•	 Noise removal (Gaussian filtering, Median filtering).
•	 Feature extraction (Gabor filters, CNN-based deep 

features).
•	 Image resizing and normalization.

Speech Data
•	 Noise reduction techniques.
•	 MFCC (Mel-Frequency Cepstral Coefficients) extraction.
•	 Extraction of pitch, jitter, shimmer, and HNR (Harmonics-

to-Noise Ratio) features.
Feature Extraction & Selection

For Image Data: Principal Component Analysis (PCA) to 
reduce dimensionality.

For Speech Data: Statistical analysis to select the most 
relevant features
Classification Models

We evaluate three machine learning models:
•	 Support Vector Machine (SVM): Constructs a hyperplane 

for classification.
•	 Random Forest: An ensemble learning method utilizing 

multiple decision trees.
•	 Decision Tree: A recursive tree-based model for 

classification.
Model Training & Testing

•	 Training performed using 80% of the dataset.
•	 Testing conducted on 20% unseen data.
•	 k-Fold Cross-Validation ensures reliability.

Performance Evaluation
Key Steps in the Machine Learning Workflow
•	 Data Collection: Gather MRI scans, spiral drawings, 

and voice recordings.
•	 Preprocessing: Clean, normalize, and remove noise 

from the data.
•	 Feature Extraction & Selection: Identify and extract 

the most important attributes.

Decision Trees (DT), have been extensively utilized for the 
early identification and classification of PD using speech and 
imaging data. Various studies have explored PD detection 
through machine learning, with SVM, RF, and DT classifiers 
being commonly employed to enhance diagnostic accuracy 
using multimodal data.
Speech-Based Detection

Several studies have explored the effectiveness of speech 
data in detecting PD. De Silva et al. [1] demonstrated that SVM 
could effectively classify PD patients using speech features. 
Vidya et al. [4] employed Decision Tree classification, showing 
its capability in distinguishing PD-affected speech patterns. 
Jain et al. [8] extended this approach by incorporating acoustic 
features into a Decision Tree model, improving classification 
accuracy. Similarly, Ren et al. [9] utilized multi-modal data 
with Decision Tree classifiers to enhance PD detection. Faruque 
et al. [10] compared SVM and RF classifiers, highlighting the 
effectiveness of both methods in speech-based classification. 
Xie et al. [14] proposed feature fusion techniques with Random 
Forest for better performance in PD detection. Bhaskar et 
al. [20] analyzed speech features using both SVM and RF, 
confirming the robustness of these models in distinguishing 
PD patients from healthy individuals. Silva et al. [23] analyzed 
different machine learning approaches applied to speech data, 
highlighting the importance of feature extraction in enhancing 
model effectiveness
Imaging-Based Detection

MRI-based PD detection has also been a focus of recent 
studies. Manual et al. [3] investigated SVM for classifying 
PD from MRI and speech data. Zhang et al. [7] demonstrated 
the effectiveness of SVM in detecting PD from brain MRI 
im-ages. Rios et al. [11] used SVM with image features to 
diagnose PD, achieving significant classification accuracy. 
Fernandes et al. [16] explored Decision Tree models for MRI 
image classification, providing an alternative approach to PD 
diagnosis. Sharma et al. [21] evaluated RF classifiers for MRI-
based PD detection, showcasing their ability to handle high-
dimensional imaging data. David et al. [24] reviewed brain 
imaging studies using SVM for PD detection, summarizing 
their advantages and limitations
Comparative Analysis and Multimodal Approaches

Several researchers have conducted comparative analyses 
of SVM, RF, and DT models for PD detection. Mollah et 
al. [2] compared Random Forest with other classifiers and 
found it to be highly effective for PD diagnosis. Le et al. [6] 
analysed the performance of SVM and RF using speech signals, 
demonstrating their comparable accuracies. Krishnan et al. 
[12] integrated MRI and speech data with RF, significantly 
improving classification performance. Wu et al. [13] combined 
deep learning with SVM to enhance PD diagnosis. Lee et 
al. [17] compared the three models—SVM, RF, and DT—
highlighting their respective strengths and weaknesses. Tiwari 
et al. [22] investigated multimodal data classification using both 
RF and SVM, reporting improved accuracy over single-modal 
approaches. Patel et al. [25] evaluated Decision Tree models 
based on accuracy, precision, and recall, confirming their 
effectiveness in detecting Parkinson’s disease. Shah et al. [18] 
utilized RF for classifying speech-based PD data, emphasizing 
its robustness. Gupta et al. [19] proposed an improved Decision 
Tree model, optimizing classification results. Vasconcelos et 
al. [5] provided an overview of machine learning techniques in 
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•	 Model Training: Train models (SVM, Random Forest, 
Decision Tree) on pre-processed data.

•	 Validation: Test models on unseen data and assess 
performance.

•	 Analysis: Compare model effectiveness in detecting 
Parkinson’s disease.

•	 Conclusion: Summarize findings and potential 
improvements.

Results and Discussion
Datasets

UCI Parkinson's disease Dataset: The dataset combines 
speech samples of 31 particulars, 23 diagnosed with Parkinson’s 
disease, and 8 are healthy. It includes 195 voice samples with 22 
features extracted from each sample, including the key features 
like fundamental frequency, jitter, shimmer, and the Harmonic-
to-Noise Ratio. Parkinson’s disease Progression Study: It 
provides a comprehensive collection of imaging data, including 
MRI images, from PD patients and control subjects. This 
dataset is instrumental for studies focusing on neuroimaging 
biomarkers for PD.

Speech Data: Acoustic Features: Features like jitter 
(frequency variation), shimmer (amplitude variation), and HNR 
are extracted to quantify voice impairments associated with PD. 
Mel-Frequency Cepstral Coefficients (MFCCs): These features 
represent the power spectrum of a voice signal, offering valuable 
information about the vocal tract structure.

Image Data: Texture Analysis: Methods like the Gray Level 
Co-occurrence Matrix (GLCM) are utilized to derive texture 
attributes from MRI or DaTscan images. Shape Analysis: 
Morphological attributes are extracted to assess structural 
changes in specific brain regions affected by PD.

Support Vector Machine (SVM): A supervised learning 
algorithm that determines the best hyper plane to distinguish 
between different classes within the feature space.

Random Forest: An ensemble learning technique that 
generates multiple decision trees and combines their predictions 
to improve accuracy and reduce over fitting.

Decision Tree: A classification model that divides data into 
subsets based on feature values, creating a tree-like structure for 
decision-making.

The models were developed and evaluated using a dataset that 
includes MRI images, voice recordings, and extracted features 
(e.g., MFCCs for speech, texture features for images).
Results

For decision trees, the ROC curve helps illustrate the effect 
of pruning and varying the depth of the tree on classification 
performance. It is simple and interpretable, providing quick 
predictions.  Having lower accuracy due to overfitting training 
data.

Model ROC-
AUC 

Accuracy Precision Recall F1-Score

Decision 
tree 

0.84 85.2 0.87 0.84 0.84

SVM 0.85 89.5 0.91 0.87 0.89
Random 
forest

0.91 92.3 0.93 0.91 0.92

Table 1. Results summary of the models used

Figure 2.

Figure 3.Performance metrics of Decision tree model

Figure 4. ROC-AUC Curve of SVM model

Figure 5. Performance metrics of SVM mode
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SVM: The ROC curve helps assess how well the model 
distinguishes between the healthy and disease affected cases. 
Performed well due to its ability to find a clear hyper plane 
separating healthy and Parkinson's patients.

Random Forest: The curve helps visualize the trade-offs 
between sensitivity (recall) and specificity as you adjust the 
threshold for decision making and achieving the highest accuracy 
by reducing over fitting and capturing complex patterns, but it 
requires more computational power.

Among the three models, Random Forest showed the highest 
accuracy and reliability in detecting Parkinson’s disease. 
However, further improvements with deep learning could yield 
even better results. Random Forest showed strong performance 
by handling feature variability and reducing overfitting. It 
provided better feature importance insights, making it useful 
for understanding key contributors to Parkinson’s detection. In 
future exploring deep learning models (CNN, LSTMs, or hybrid 
models) could enhance performance. Increasing dataset size and 
diversity can improve model generalization. Implementing real-
time detection using IoT-enabled systems for early Parkinson’s 
diagnosis. 
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Discussion
Random Forest model demonstrates highest performance 
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PD detection. The ensemble nature of Random Forest allows 
it to capture complex patterns more effectively than individual 
models like SVM or Decision Trees. The ROC curves further 
illustrate the models' discriminative capabilities, with the 
Random Forest achieving the highest AUC-ROC, signifying 
excellent performance in distinguishing between PD and non-PD 
cases. Figure 2,3,4,5 shows the results for reference. Utilizing 
machine learning models to detect Parkinson's disease through 
speech and image data presents a promising method. Among 
the models analyzed, the Random Forest classifier demonstrates 
superior accuracy and robustness, establishing it as an effective 
tool for early PD diagnosis. Future research should emphasize 
the integration of multimodal data and the development of 
advanced feature extraction techniques to improve diagnostic 
precision further.
Conclusion

This research focuses on detecting Parkinson’s disease using 
image and speech data by implementing and assessing three 
machine learning models: Support Vector Machine (SVM), 
Random Forest, and Decision Tree. The objective was to 
accurately classify individuals with Parkinson’s disease based on 
features extracted from medical imaging and speech recordings. 
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