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Introduction
In this paper, an exact solution to the 

dispersion equation of a plasmonic wave has 
been presented. The final form of the achieved 
expression is different from the previously 
reported forms [1,2]. The mathematical 
analysis assumes a two-dimensional 
Transverse Magnetic (TM) plasmonic wave 
propagating along the boundary of a metal 
and air as depicted by Figure 1. A detailed 
analytical procedure, starting from Maxwell’s 
equations, accompanies the final result. The 
result has also been plotted for different 
metals to validate its accuracy.  The novelty 
of the paper lies in the analysis of an existing 
problem with a more rigorous and elaborate 
mathematical approach followed by a new 
analytical result. 

Abstract

A metal-dielectric interface has been studied in this paper in the light of wave propagation characteristics. 
A new analytical result, through a simpler approach for deriving the dispersion equation in plasmonic 
waveguides, has been reported and visualized. A two-dimensional Transverse Magnetic (TM) wave is 
theorized and analyzed with respect to its propagation along the boundary of metal and air. Mathematical 
analysis results in the relationship between the propagation parameter and wavelength of operation. The 
plots reveal good conformity with the previous studies. For comparison, the propagation characteristics 
in free space have also been included. To validate the proposed results of this study, Finite Element 
Analysis (FEA) has been used to visualize the distribution of fields near the metal-dielectric boundary.

while superscripts are the dimensions along 
which the magnitudes are oriented.
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Using Maxwell’s equations, we arrive at 
equations 5 and 6.

( )3              EH
t

  ∂
∇× = ε

∂



 

( )
y x

y zH H i H             4E  i
x

  
y

∂ ∂
− = γ = − ωε

∂ ∂

( )y x 5      H E          β = ωε

( )y z 6     H E           γ = −ωε

In the steps above, the time derivative ∂/∂t 
yields the term -iω while spatial derivatives 
∂/∂x and ∂/∂z yield iγ and iβ, respectively. 
Introducing boundary conditions provides 
the three relationships in (7). Parallel field 
components must be continuous across the 
boundary. The normal component of the 
electric displacement D = εE is continuous at 
the boundary (x = 0).
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For x > 0 (x = 0 lies along the interface),
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Equation (6) can be realized for both metal and 
air to achieve equations (10) and (11).
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Figure 1. Plasmonic wave propagating along the 
boundary of two materials.

Equations for two-dimensional time 
harmonic TM waves propagating along 
the interface are shown below. The electric 
and magnetic field vectors  and HE



 show 
magnitudes ( ), , ,, ,x z y

M A M A M AE E E
 

as well as 
directions (x ̂, ŷ, ẑ) of the fields. In the 
expressions below, the subscripts M and A 
stand for points in the metal and air respectively 
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Using boundary conditions  and dividing equation (10) by (11)
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Now, the curl of the Maxwell’s equation in (3) and (4) gives the 
following results.
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Equation (17) can be applied separately to the two media under 
consideration i.e. metal and air.
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The expressions in (18) and (19) can be used to replace the left-
hand side expressions in (12).
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By rearranging the equation (20), β2 can be isolated.
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Rearranging equation (23) leads us to (25). Quadratic formula 
can then be used to find solutions for ω2.
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The new result in equation (26), reveals that the propagation of 
a two-dimensional plasmonic wave depends on the propagation 
constant along z-direction, plasma frequency and speed of light 
in vacuum. It is independent of the other propagation constant, γ.

The result in (29) has been plotted for silver (Ag), copper 
(Cu) and aluminum (Al) as shown in Figure 2. The values for 
electron densities [3] of the three metals are given in Table 2, 
where 
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NOTATION DESCRIPTION

E;H
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Electric, Magnetic Field Vectors

Electric, Magnetic Field Components in 
Metal (M)/ Air (A) along y (or x or z) axis

ε0 Permittivity of free space
μ0 Permeability of free space
c Speed of light in vacuum
β Propagation constant along z-direction
γ Propagation constant along x-direction

ωp Plasma frequency
N Electron concentration 
q Electron charge

m0 Electron mass

y y
M,A M,AE ;H

Table 1. List of symbols used in the paper.

Next, a plasmonic waveguide has been modeled and simulated 
in two dimensions through COMSOL Multiphysics, which 
employs Finite Element Method (FEM). In the derived equations 
above, air has been used as dielectric. Therefore, air has been 
chosen as the dielectric for the simulations too. The physical 
mechanisms of the study relate to ‘Electromagnetic Waves, 
Frequency Domain (emw)’. The structure is investigated by 
means of boundary mode and frequency domain analyses. The 
top and bottom layers of the waveguide are assigned scattering 
boundary conditions. A TM wave is injected into the waveguide 
at port 1. It exits at port 2 after generating plasmon resonance. 
Figure 3 shows the electric field distribution around the metal-
dielectric interface at a wavelength of approximately1500nm, 
which signifies telecom band. The fields are confined in that 
region giving rise to surface plasmons. The mesh size for 
numerical analysis is selected by the physics governing the 
study. However, a user-defined mesh is introduced near the 
metal-dielectric boundary. The user-defined mesh is much finer 
than the physics-controlled mesh. Single element size for each 
mesh varies by a factor of 100. To model Ag in COMSOL, Drude 
model for electric wave propagation has been used. The model 
uses the following values: plasma frequency = 14.0 x 1015 s-1 
and damping constant = 0.032 x 1015 s-1. A parametric sweep is 
used to observe the effects of electromagnetic propagation with 
varying frequency.

Figure 2. Plots showing the relationship between propagation 
constant (β) and frequency (ω).

Metal N (1/m3)
Ag 5.86 x 1028

Cu 8.47 x 1028

Al 18.1 x 1028

Table 2. List of symbols used in the paper.

(24)

(25)



Page 3 of 4

Arslan Asim et al. Japan Journal of Research. 2025;6(1):086

Japan J Res.. 2025; Vol 6 Issue 1

The FEM analysis provides only one curve for the dispersion 
relation. The curve generated by COMSOL is compared with 
the one generated through the exact solution (by MATLAB). 
The two curves fit almost perfectly. The comparison has been 
carried out using normalized parameters (βc/ωp  and  ω/ωp) for 
Ag. 

However, it is imperative to understand why FEM analysis 
does not provide both the solutions that we have acquired from 
the analytic method. So, the dispersion curves in Figure 2 have 
been differentiated using ‘gradient’ command in MATLAB and 
plotted in Figure 4. The relations for which derivates have been 
plotted include the light line (free space/ air), ω1 and ω2 for Ag. 

The derivative  dω/dβ yields the speed of the wave. For ω1, the 
wave velocity exceeds the speed of light in free space after a 
specific value of β, which is unrealistic. Hence, one of the two 
analytic solutions must be rejected for the physical realization 
of plasmonic waveguides.

This paper approaches the classical surface plasmon theory 
from a mathematical perspective and aims to present a novel 
result for the dispersion relation of a single metal-dielectric 
layer. The new result is supported by a rigorous analytical 
methodology utilizing Maxwell’s equations and fundamental 
boundary conditions. The result has been visualized to validate 
its accuracy.

Figure 3. (a) Finite Element Analysis (FEA) setup. (b) Normalized electric field distribution (V/m) at the silver-air (metal-dielectric) interface 
showing the characteristic Surface Plasmon Polariton (SPP) wave. (c) Dispersion curves for analytical and simulation methods. The normalized 

parameters represent βc/ωp  and  ω/ωp  on the x and y axes respectively.

Figure 4. Graphs showing the relationship between propagation speed (v = dω/dβ) and propagation constant (β).

(a)

(b)

(c)
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