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Introduction
The problem of steady state, one-

dimensional heat conduction with transverse 
heat transfer by convection and radiation 
has many different applications; the most 
prominent perhaps being the use of extended 
surfaces for cooling, i.e., fins. It produces 
a 2nd order ordinary nonhomogeneous 
differential equation which for the case of 
transverse convection is linear and its analytic 
solution is readily available for all possible 
boundary conditions in any of the classic 
heat transfer textbooks. However, when the 
mode of transverse thermal radiation heat 
transfer is also included, the differential 
equation is nonlinear, and its comprehensive 
analytic solution still eludes us. The problem 
has of course been solved by numerical 
methods, which are quite effective, but lack 
sophistication and cannot easily provide the 
physical insights and trends when compared 
to analytic solutions. The necessity for such a 
solution is evident, especially considering that 
in all such applications, strictly speaking, both 
modes are always present. 

A method by which the problem has been 
traditionally addressed to produce an analytic 
solution is the perturbation method [1].  The 
method has produced an analytic solution 
to the problem, but it is not exact, and it is 
subject to the condition that the nonlinear 
term is small such that the solution can be 
expanded in terms of an asymptotic series. 
Methods to produce a better approximate 

Abstract

An exact analytic solution to the problem of steady heat conduction with convective and radiative 
heat transfer normal to the conduction heat flow is presented. The solution is unique as it does not 
impose any assumptions on the surroundings and fluid temperature values and addresses all possible 
tip boundary conditions. The temperature profiles in the direction of heat conduction are produced for 
constant temperature boundary condition at the base and three different boundary conditions at the 
tip: adiabatic, constant temperature and radiative/convective heat transfer. Approximate solutions to 
the implicit exact solution are also developed. The analytic solutions, exact and approximate for the 
adiabatic tip boundary condition, compare very well to experimental data.

analytic solution proceeded after that, the most 
notable ones use a series expansion approach 
for the temperature distribution. These include 
the Homotopy Analysis Method (HAM), first 
introduced by Wang [2] and further developed 
and applied to non-linear problems by Liao 
[3]. The method was utilized for an extended 
surface with transverse radiative and convective 
heat transfer by Aziz and Khani [4] . Probably, 
the most successful technique is a derivative 
of the HAM referred to as the Differential 
Transformation Method (DTM) first introduced 
by Pukhov [5]  and refined by Zhou [6] . The 
DTM was utilized successfully in an extended 
surface application by Dogonchi and Ganji [7] 
. Another notable approach is the Collocation 
Method used by Singh, et. al., for a convective-
radiative fin with temperature dependent 
transport coefficients [8].  For engineering 
applications all these methods produce 
adequately accurate results, and they can be 
applied to the more complex extended surface 
problems that include temperature dependent 
transport properties, internal heat generation 
and moving fins. They are, however, somewhat 
cumbersome to apply due to the characteristic 
implementation of a series expansion for which 
a large number of individual terms must be 
developed. Furthermore, all such efforts do 
not address all possible boundary conditions 
and they all assume either a zero temperature 
of the surroundings, mainly when radiation is 
included, or equate the ambient temperature to 
that of the cooling fluid temperature.  
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Consequently, we identify the need to generate an exact 
solution to the problem of heat conduction with transverse 
convection and radiation for all typical boundary conditions 
that is simple to apply. We present such an exact solution for 
temperature independent transport properties, and we validate by 
comparisons to experimental data. Since the solution is implicit, 
we also present an explicit approximate solution. Its utility is 
valuable for code verification, new approximate techniques to 
solve the higher-order differential equation and identification of 
the dependence and relevant trends of the different parameters 
on the temperature and heat flux profiles.  

Solutions for various boundary conditions
The condition of heat conduction with transverse convective 

and radiative heat transfer arises frequently in various 
applications, the most notable ones are extended surfaces for 
heat rejection in thermal management of computer components, 
space radiators, air conditioning among many others. Figure 1 
schematically represents the problem wherein heating from a 
source maintains a constant elevated temperature at the base of 
the extended surface. Heat transfer by conduction occurs along 
the length while convective and radiative cooling take place in 
the normal direction.

Introducing the non-dimensional variables, ;T x
T L

θ ξ
∞

= =  the 
differential equation with the base boundary condition of known 
temperature is

                                                                                              (4)
2

4
2 ( 1) ( ) ( 0)r v f o

d with
d
θ α θ α θ θ θ ξ θ
ξ

= − + − = =

where 
3 2 2

, ,fo
o f r v

c c

TT PT L hPLand
T T kA kA

εσθ θ α α∞

∞ ∞

= = = = . The last two 
parameters are characteristic numbers depicting the ratio 
of radiative heat transfer to heat transfer by conduction and 
convective heat to heat transfer by conduction, respectively.
Solution with adiabatic boundary condition at tip; 0

x L

dT
dx =

=

For long extended surfaces, i.e. L>>D the heat transfer 
rate from the cross-sectional area at the tip of the surface, 
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                            (5)

with L >> D and T > TL, TL ≥ Tf, Hence, the assumption of 
an insulated tip is quite reasonable and imposes an adiabatic 
boundary condition at x = L; 

1

0 0
x L

dT d
dx d ξ

θ
ξ= =

= ⇒ = .
To solve the 2nd order, non-linear, non-homogenous 

differential equation we employ the following substitution: 2

2( ) d d duu u
d d d
θ θθ
ξ ξ θ

= ⇒ = . The differential equation becomes one of 
separation of variables as follows:

4 4

0

( 1) ( ) ( 1) ( )
L

u

r v f r v f
duu udu d
d

θ

θ

α θ α θ θ α θ α θ θ θ
θ

 = − + − ⇒ = − + − ∫ ∫   (6)

where the adiabatic boundary condition is imposed, 

1

( ) 0L
du
d ξ

θθ θ
ξ =

= = =  with L
L

T
T

θ
∞

=  which represents the non-
dimensional temperature at the tip, and it is still an unknown 
quantity. Performing the integration and reinstating the original 
variables produces the following differential equation:

4 42 ( 5) ( 5) ( 2 ) ( 2 )
5

r
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d
d

αθ θ θ θ θ α θ θ θ θ θ θ
ξ
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(7)

where only the negative root represents cooling, i.e., negative 
temperature slope. Equation 7 represents an exact explicit 
expression for the heat flux since ( ) TdT dq T k k

dx L d
θ
ξ

∞= − = − . For 
heating applications, the original differential equation needs to 
be rearranged and solved and the positive root of that solution 
should be selected. In this paper only cooling is addressed, but 
the methodology can easily be extended to the more infrequent 
case of heating. Separation of variables and integration produces 
the final implicit solution:

4 4

( )
2 ( 5) ( 5) ( 2 ) ( 2 )
5

o
r L L v f L L f

dt

t t t t
ξ θ

α θ θ α θ θ θ θ
= −

   − − − + − − −  
∫             (8)

where the base boundary condition is directly imposed. The 
tip non-dimensional temperature, L can be iteratively obtained 
by the following transcendental equation since (1)=L:

4 4

1 0
2 ( 5) ( 5) ( 2 ) ( 2 )
5

L

o
r L L v f L L f

dθ

θ

θ

α θ θ θ θ α θ θ θ θ θ θ
+ =
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∫

 
            (9)

The heat flux at the base of the extended surface, 

0 0
o

x

TdT dq k k
dx L d ξ

θ
ξ

∞

= =

= − = −

 can be determined utilizing (7):

4 42 ( 5) ( 5) ( 2 ) ( 2 )
5o r o o L L v o o f L L f

Tq k
L

α θ θ θ θ α θ θ θ θ θ θ∞    = − − − + − − −          (10)
If the extended surface represents a means for cooling, i.e., a 

fin, then the performance can be assessed by the fin efficiency 
defined as the ratio of the actual heat transfer rate to the heat 
transfer rate in the absence of temperature gradients,

Figure 1. Schematic of the extended surface subject to transverse 
cooling by radiation and convection along with the differential system 

for analysis

0 ( ) 0 0net C C C R V C R VQ Q Q dQ dQ dQ dQ dQ dQ= ⇒ − + − − = ⇒ − − − =           (1)
Fourier’s law, Stefan-Boltzmann law, and Newton’s law of 

cooling, represent conduction, radiation, and convection heat 
transfer rates,

( ) ( )4 4 4 4; ;

( ) ( )

C c R s

V f s f

dTdQ d kA dQ T T dA P T T dx
dx

dQ h T T dA hP T T dx

εσ εσ∞ ∞
 = − = − = − 
 

= − = −

 



         (2)  

where Ac is the cross-sectional area and P is the perimeter. 
Substitution into the energy conservation, imposing 
temperature independent transport properties, k and, and 
some rearrangement leads to the following 2nd order non-linear 
differential equation:

       
                                                                                      (3)( )

2
4 4

2 ( ) 0f
c c

d T P hPT T T T
dx kA kA

εσ
∞− − − − =

which can be equally applied to rectangular and cylindrical 
coordinates. For cylindrical geometries 2, / 4cP D A Dπ π= =  
while for rectangular geometries 2( ), cP w D A wD= + =  where 
w is the width. For most applications of interest, the boundary 
condition at x = 0 is one of constant known temperature, To, thus 
all the different solutions that follow impose T(0)=To. However, 
the solutions can be easily extended to a constant heat flux or 
heat rate boundary condition. We reiterate that the governing 
differential equation is applicable to a steady-state, stationary 
system under the assumptions of one-dimensional conduction 
and temperature independent transport properties, k, h, and ε
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f
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Q
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η
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=
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

 
                         (11)

where sA PL=  is the total radiating surface area of the fin and 
o c oQ A q=  is the actual fin heat transfer  rate. Substitution for the 

heat transfer rate utilizing (10) and some algebraic manipulation 
yields,

                                                                                            
 (12)

4 4

4

2 ( 5) ( 5) ( 2 ) ( 2 )
5
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− + −

Approximate solution
Since the exact solution is implicit, it is instructional and 

convenient to produce an explicit solution for the temperature, 
albeit approximate. The maximum ratio of heat rate due to 
radiative cooling to the heat rate due to convection occurs at 
the base,

4 4 4

max
max

( ) 1
( )

o oR r

V o f v o f

T TQq
Q h T T

εσ θα
α θ θ

∞
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



                    (13)

We note that for qmax >> 1 radiative cooling dominates, 
hence convective cooling can be ignored. For this case an exact 
solution is available and should be utilized [9]. This would 
occur predominantly if the base temperature is considerably 
larger than the ambient temperature, but for reasonable 
values of θ0 we note that 

4 1 ~ (1)o

o f

Oθ
θ θ

−
−

 and the ratio of heat rates 
effectively depends on the ratio 

3
r

v

T
h

α εσ
α

∞=  which is always less 
than 1 for reasonable values of the parameters involved even if 
radiative cooling dominates. Hence, a rational approximation 
for the second derivative is a linear one as follows:

2
4

1 22 ''( ) ( 1) ( )r v f
d C C
d
θ θ θ α θ α θ θ θ
ξ

= = − + − ≈ +
                                    (14)    

where derivatives will be denoted using primes. 
Imposing the exact boundary conditions at base and tip; 

4''( ) ( 1) ( )o r o v o fθ θ α θ α θ θ= − + −  and 4''( ) ( 1) ( )L r L v L fθ θ α θ α θ θ= − + −

determines the constants C1 and C2. After some simple algebra 
the approximate function for the second derivative is,

4 4( ) ( )''( ) ''( ) ( )r o L v o L
o o

o L

α θ θ α θ θθ θ θ θ θ θ
θ θ

− + −
≈ + −

−
                              (15)

where evaluation of θL also remains exact via Equation 9. 
Solution of the differential equation proceeds in the same 
manner as the exact approach previously outlined and leads to 
the following differential equation:

2 2

4 4
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L o o L

r o L v o L
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d C C
d

where C

= − − + − −

− + −
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                                                          (16)

with the boundary condition at the tip, 
1

0d
d ξ

θ
ξ =

=  already applied. 
Separation of variables, integration, and implementation of the 
base boundary condition, ( 0) oθ ξ θ= =  yields

2 2
0

( )
( ) 2[ ''( ) ]( )o L o o L

dt dy
C t C t

ξθ

θ

ξ θ
θ θ θ θ θ

= − = −
− + − −

∫ ∫                        (17)

The integral on the left-hand side is elementary and has a 
closed-form solution. Evaluation of the integral followed by some 
considerable algebra produces the final approximate explicit 
function for the non-dimensional temperature distribution. 
However, the approximate solution does not directly impose 
(1)=L, hence an additional correction is included to enforce 
the condition. The final approximate solution is then

( )2
2 2 2

( )
2

C
L L

L C

Be A C AC

BCe

ξ
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θ θ
θ ξ θ δ

−

−

− + +
≈ + −                               (18)

where 2 2 2''( ) , ( ) 2 ( ) ''( ),o o o L o L oA C B C AC= − = − + − +θ θ θ θ θ θ θ θ θ

( )2
2 2 2

2

C
L L

C
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BCe

−

−

− + +
=

θ θ
δ

 

It should be noted once again that 
even though the temperature expression is approximate, the 
second derivative, 4''( ) ( 1) ( )o r o v o fθ θ α θ α θ θ= − + −  the first derivative,

4 42'( ) ( 5) ( 5) ( 2 ) ( 2 )
5

r
L L v f L L f

αθ ξ θ θ θ θ α θ θ θ θ θ θ   = − − − − + − − −     and 
the tip temperature,  (Equation 9) are exact. Furthermore, 
the expressions for the heat flux (Equation 10) and efficiency 
(Equation 11) if a fin is the application are also exact.

To validate and perform error analysis, the solutions are 
compared to experimental data obtained from a simple 
experiment [10]  utilizing a cylindrical fin cooled by radiation and 
natural convection. The experiment investigated three different 
fin configurations made of Al 2024-T4 for which the average 
thermal conductivity and emissivity are 120W/m/K and 0.35, 
respectively and are effectively independent of temperature. The 
authors produced a numerical solution where they determined 
the convective heat transfer coefficient, h based on a correlation 
by Churchill and Chu [11]  for free convection and they allowed 
it to vary as a function of temperature. Including temperature 
variations in the calculation of h is probably unnecessary 
since such correlations in general do not produce accuracies 
better than 20%. Hence, the updated Churchill-Bernstein [12]  
correlation will be used for an average heat transfer coefficient 
applicable to cylinders subject to transverse flow and it is valid 
for all conditions so long as ReDPr>0.2:

( )

4/55/81/2 1/3

1/42/3

0.62Re Pr Re0.3 1
2820001 0.4 / Pr

f D Dk
h

D

 
   = + +   

      +  

                  (19)

The parameters that are temperature dependent are calculated 
based on the film temperature, but for this case the temperature 
variation is not substantial to warrant such elevated degree of 
accuracy. Therefore, all parameters will be calculated at STP 
(1atm, 300K) and they are as follows for air:   and an average 
velocity of v=0.05m/s was assumed for natural convection. 
Then for all three cylindrical fins examined,   and thus the 
Churchill-Bernstein expression can be used. The average heat 
transfer coefficient calculated is presented in Table 1 along with 
the geometry and thermal conditions for the experiment:

FIN D (mm) L (cm) ĥ(W/m2/K) To (
oC) T∞=Tf (

oC)
1 3.18 68.5 14.915 92.8 20.8
2 6.35 68.5 10.054 96.0 21.0
3 9.53 90.0 8.027 89.8 20.9

Table 1. Geometry and thermal conditions for the fins used in the 
experiment [3].

The parameters above are sufficient to produce the exact solution, 
Equation 8, and the approximate solution, Equation 18, and since 
L/D>>1 the adiabatic tip boundary condition is appropriate. The 
maximum ratio of heat transfer by radiation to heat transfer by 
conduction for each fin is max max max1 2 3

0.193, 0.291, 0.354
Fin Fin Fin

q q q= = =

, which confirms that neither radiation nor convection can be 
excluded as they contribute to cooling almost comparably. 
The non-dimensional temperature distribution along the fin is 
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compared to the experimental measurements for all three fins 
in Figures 2-4. The agreement with experiment is excellent 
which confirms the method and the solution for both exact and 
the approximation. Moreover, the approximation compares 
very well to the exact solution. For fin 1, the maximum error 
produced, ( ) ( )

max ; 0 1
( )

exact apprx

exact

err
θ ξ θ ξ

ξ
θ ξ

− 
= ≤ ≤ 

 
 is 0.2%, for fin 2 it is 

0.3% and for fin 3 it is 0.2%. Effectively, the approximation 
produces negligible discrepancy for these cases. However, the 
conditions for this experiment resulted in a base temperature 
that doesn’t contribute to the non-linear term substantially,  . 
A more rigorous error analysis will be performed with the next 
boundary condition, constant and known tip temperature.

The fin efficiency is given by
4 4( ) ( )

o
f

s o s o f

Q
A T T hA T T

η
εσ ∞

=
− + −

                         (20)  

Invoking 
2

04o c o
TD dQ A q k
L d ξ

π θ
ξ

∞

=

 
= = −  

 




 
and ,s fA PL DL T Tπ ∞= = =  the 

efficiency expression is represented in terms of the non-di  
mensional parameters as follows:

[ ]4 4

4

2 ( 5) ( 5) ( 2) ( 2)
5

( 1) ( 1)

r o o L L v o o L L

f
r o v oa

α θ θ θ θ α θ θ θ θ
η

α θ θ

 − − − + − − − 
=

− + −
           (21)

The efficiency values of the three fins investigated are  
1 2 30.122, 0.185, 0.184.f f fη η η= = =

Solution with constant temperature boundary condition 
at tip; T (x = L) = TL

Starting with Equation 6,

4 4( 1) ( ) ( 1) ( )
L L

u

r v f r v f
u

duu udu d
d

θ

θ

α θ α θ θ α θ α θ θ θ
θ

 = − + − ⇒ = − + − ∫ ∫      (6)

where 
1

L
du
d ξ

θ
ξ =

=  . Integrating and solving for du
d
θ
ξ

=  we obtain

4 4 22 ( 5) ( 5) ( 2 ) ( 2 )
5

r
L L v f L L f L

d u
d

αθ θ θ θ θ α θ θ θ θ θ θ
ξ

   = − − − − + − − − +          (22)

for cooling. Separating variables and integrating again 
produces the exact implicit solution:

4 4 2

( )
2 ( 5) ( 5) ( 2 ) ( 2 )
5

o
r L L v f L L f L

dt

t t t t u

θ

θ

ξ θ
α θ θ α θ θ θ θ

= −
   − − − + − − − +  

∫      (23)

where the non-dimensional gradient at the tip,  can be obtained 
by the following equation:

4 4 2

1 0
2 ( 5) ( 5) ( 2 ) ( 2 )
5

L

o
r L L v f L L f L

d

u

θ

θ

θ

α θ θ θ θ α θ θ θ θ θ θ
+ =

   − − − + − − − +  
∫      (24)

The expressions for the heat flux at the base and the efficiency 
are determined in a similar fashion as the previous case and are 
as follows:

Figure 2. Comparison of the exact (Equation 8) and approximate 
(Equation 18) solutions to experimental data for Fin 2

Figure 3. Comparison of the exact (Equation 8) and approximate 
(Equation 18) solutions to experimental data for Fin 1

Figure 4. Comparison of the exact (Equation 8) and approximate 
(Equation 18) solutions to experimental data for Fin 3
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4 4 22 ( 5) ( 5) ( 2 ) ( 2 )
5o r o o L L v o o f L L f L

Tq k u
L

α θ θ θ θ α θ θ θ θ θ θ∞    = − − − + − − − +    (25)
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4
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5

( 1) ( )

r o o L L v o o f L L f L
c

f
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uA
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α θ θ θ θ α θ θ θ θ θ θ
η

α θ θ θ

   − − − + − − − +  
=

− + −
 (26)

where As = Ac + PL  since the tip is not insulated and thus it is 
subject to heat transfer by both modes.

Approximate solution
Generating the approximation proceeds in the same manner as 

the previous case where the second derivative is approximated 
by a linear function

2
4

1 22 ''( ) ( 1) ( )r v f
d C C
d
θ θ θ α θ α θ θ θ
ξ

= = − + − ≈ +                   (14)

and the constants C1 and C2 are evaluated at the base and tip, 
(see equation 15). Separation of variables (identical steps as the 
exact solution above) produces,

2 2 2

4 4

( ) 2[ ''( ) ]( )
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L o o L L

r o L v o L
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d C C u
d

where C

= − − + − − +

− + −
=

−

θ θ θ θ θ θ θ θ
ξ

α θ θ α θ θ
θ θ

                (27)

where 
1

L
du
d ξ

θ
ξ =

=  and can be evaluated by the exact expression 
from equation 22. Proceeding in the same manner as the 
previous case, we separate variables, evaluate the elementary 
integrals to produce the approximate expression. A correction is 
also applied here to satisfy the tip boundary condition, θ(1) =  θL 
to produce the final expression,
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2 2 22

( )
2

C
L L L

L C

Be A C AC Cu

BCe

ξ

ξ

θ θ
θ ξ θ δ

−

−

− + + −
≈ + −                (28)

where ( )
2 2 2 2

2
2 2 2

''( ) , ( ) 2 ( ) ''( )

2

2

o o o L o L L o

C
L L L

C

A C B C AC Cu and
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As previously, we emphasize once again that the second 
derivative, 4''( ) ( 1) ( )r v fθ θ α θ α θ θ= − + − , the first derivative, 

4 42'( ) ( 5) ( 5) ( 2 ) ( 2 )
5

r
L L v f L L f

αθ ξ θ θ θ θ α θ θ θ θ θ θ   = − − − − + − − −  
 and the tip 

temperature gradient,  (Equation 24) are exact. Furthermore, the 
expressions for the heat flux (Equation 25) and fin efficiency 
(Equation 26) are also exact.

Error  analysis allows us to establish the range that the 
approximate explicit expression for the non-dimensional 
temperature can be utilized within relative error tolerance 
dependent on the application and degree of accuracy 
required. As previously mentioned, the discrepancy 
between exact and approximate solutions increases as 
the ratio of radiative to convective heat transfer increases; 4 4 4

max
max

( ) 1
( )

o oR r

V o f v o f

T TQq
Q h T T

εσ θα
α θ θ

  − −
= = =    − −  





 

A comparison of the approximate solution to the 
exact solution is presented in Figure 5 (left) for  

max 2, 2, ( 315 ) 1.1, ( 21 )o o
o o L fq T C and T T Cθ θ ∞= = = = = = . The maximum 

error for this case, ( ) ( )
max ; 0 1

( )
exact apprx

exact

err
θ ξ θ ξ

ξ
θ ξ

− 
= ≤ ≤ 

 
 is 2.4%.

In Figure 5 (right) the maximum error is presented as a function 
of qmax. As expected, error increases as radiative heat transfer 
becomes more prevalent relative to convective heat transfer. 
For most applications an error of less than 6% in estimating 
the temperature profile is acceptable especially considering that 
the expressions for heat flux and cooling efficiency are exact. 

Furthermore, situations that result in qmax > 5 are infrequent and 
can be addressed by neglecting convective heat transfer. For 
example, for qmax = 4 using reasonable values for ε = 0.82, h 
= 8.82 W/m2/K, Tf = T∞ = 21°C the base temperature is  T0 = 
900°C.

Applications with such infrequent high temperature values 
will resort to more effective means of cooling, e.g., convective 
cooling using liquids and/or phase change cooling. In addition, 
we note that a value of h = 8.82 W/m2/K represents cooling via 
gas at very low speeds or simply free convection and can be 
neglected. In this case, simpler exact and approximate solutions 
[9] are available wherein convection is considered negligible. 
Furthermore, such elevated temperature variation along the 
extended surface will probably (since it is material dependent) 
require inclusion of temperature dependent transport properties

Figure 5. Left: Comparison of the exact solution (eq’n 23) to the ap-
proximate solution (eq’n 28) for qmax = 2, θo = 2, (To = 3150C), θL = 
1.1, Tf = T∞ = 21°C. Right: Maximum error as a function of qmax.

Solution with radiative and convective tip boundary 
condition;

( )4 4( )L f L
x L

dTk h T T T T
dx

εσ ∞
=

− = − + −

Strictly speaking, this case represents the most general 
situation where there is no special treatment of or any 
assumptions imposed at the tip, e.g., constant temperature or 
insulated. Hence, it can be applied to almost any geometry 
with no restrictions subject only to the base boundary condition 
of constant known temperature, To. The condition of L > D 
is still imposed to maintain the one-dimensional conduction 
assumption, however heat transfer from the tip can still be 
significant. For example, a typical case is that of computer 
components where maximum temperature values are of the 
order of 80oC, i.e., To = 80oC. Supposing ambient and cooling 
fluid temperature values of 21oC, i.e., Tf = T∞ = 21°C and TL = 
1.1 T∞ and L= 2D (4L/D = 8) the ratio of heat transfer from the 
lateral surface to heat transfer from the tip is 

4 4

4 4

4 ( ) 18.6
( )

L
oR

T
R L

L T TQ
Q D T T

∞

∞

−
= =

−





 and 
4 ( )

16
( )

L
o fV

T
V L f

L T TQ
Q D T T

−
= =

−





            (29)

These imply that about 5.4% of the total heat transfer by 
radiation and about 6.2% of the total heat transfer by convection, 
i.e., a total of more than 11% of the total heat transfer occur from 
the tip surface. These are minimum values since the temperature 
decreases along the length which implies that the average 
ratios calculated by (29) are actually smaller. For such cases 
the adiabatic tip assumption is ill-advised, and the radiative/
convective tip boundary condition should be implemented.

The non-dimensional form of the radiative/convective 
boundary condition is

( )4

1

1 ( )c
L r L v L f

Ad u
d PLξ

θ α θ α θ θ
ξ =

 = = − − + − 
                (30)
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Invoking equation 22, substitution of the expression for the 
boundary condition and integrating produces the exact implicit 
solution,

4 4 2

( )
2 ( 5) ( 5) ( 2 ) ( 2 )
5

o
r L L v f L L f L

dt

t t t t u

θ

θ

ξ θ
α θ θ α θ θ θ θ

= −
   − − − + − − − +  

∫     (31)

where the tip non-dimensional temperature,  can be determined 
by

4 4 2

1 0
2 ( 5) ( 5) ( 2 ) ( 2 )
5

L

o
r L L v f L L f L

d

u

θ

θ

θ

α θ θ θ θ α θ θ θ θ θ θ
+ =

   − − − + − − − +  
∫    (32)

The expressions for the heat flux at the base and the efficiency 
are determined in an identical fashion as the constant tip 
temperature case and produce the same expressions, i.e., 
equations 25 and 26.
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2 2 22
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2
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L L L

L C
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≈ + −                    (33)
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δ

which maintains exact values for the tip temperature and tip 
gradient. Evaluation of the approximate temperature distribution 
along the extended body proceeds by calculating the exact value 
for θL via equation 32 which then allows calculation of the exact 
value for the tip gradient, uL via equation 30. Also as before, 
the expressions for the heat flux at the base and the efficiency 
are identical as the constant tip temperature case and produce 
the same expressions, i.e., equations 25 and 26. A comparison 
of the exact non-dimensional temperature distribution to 
the approximation is depicted by Figure 6 (left) for the same 
conditions as the constant tip temperature case. i.e.,  qmax = 2, θo 
= 2, (To = 3150C), θL = 1.1, Tf = T∞ = 21°C. This comparison shows 
that the general case produces a slightly greater maximum error 
of 3.4% which is attributed to the additional presence of the 
quartic non-linear term in the tip gradient expression.

Figure 6 (right) presents the maximum error as a function 
of the maximum radiation to convection heat rate ratio, 
qmax which confirms the elevated error as compared to the 
constant tip temperature case. The maximum error produced 
by the approximation increases almost linearly with qmax and 

Figure 6. Left: Comparison of the exact solution (eq’n 31) to the 
approximate solution (eq’n 33) for qmax = 2, θo = 2, (To = 3150C), θL = 

1.1, Tf = T∞ = 21°C.  Right: Maximum error as a function of qmax.

exceeds 7% for qmax ≥ 3. Hence, if very accurate prediction 
of the temperature distribution in the interior of the body – 
base and tip temperature values are exact – is required, the 
approximate solution should not be used for higher values of 
qmax. Furthermore, and similar to the constant tip temperature 
case, values for qmax > 3 would probably require the introduction 
of temperature dependent transport properties.
Conclusions 

Many different engineering applications present the 
problem of heat conduction with transverse heat transfer by 
convection and thermal radiation. One of the most prominent 
ones is utilizing such extended surfaces to enhance cooling by 
increasing the heat transfer area. Therefore, an exact analytic 
solution to the problem would be instructional in revealing the 
dependence of the temperature distribution on the different 
parameters relevant to the system and utilizing the solution for 
code verification or verification of more intricate versions of the 
same problem. Such solution has been produced for steady state, 
one-dimensional heat conduction with normal heat transfer by 
convection and radiation under the assumption of temperature 
independent transport properties of a stationary extended 
surface. The solution is generated for constant known base 
temperature and all possible tip boundary conditions with no 
assumptions on the tip, ambient and cooling fluid temperature 
values. It produced exact explicit expressions for the heat flux 
as a function of location, cooling efficiency, and exact implicit 
expressions for the temperature distribution and it was validated 
by comparison to experimental data by demonstrating excellent 
agreement. Because the solution for the temperature profile 
is implicit, an approximate explicit solution is also presented 
which utilizes exact expressions for heat flux and tip boundary 
values. The approximate solution was verified by comparisons 
to the exact solution and experimental data with adequate 
agreement to render it useful. An error analysis provided a 
range for which the approximate solution can be utilized with 
engineering acceptable discrepancy. 
Nomenclature

Ac = cross-sectional area; As = surface area; D = diameter or 
thickness of extended surface; h = fluid heat transfer coefficient; 
k = thermal conductivity; L = length of extended surface; P = 
perimeter;  Q = heat transfer rate; q = heat flux; qmax = maximum 
ratio of heat rate due to radiation to heat rate due to convection; 
T = temperature; x = dimension in the direction of heat 
conduction;  = non-dimensional characteristic number;  
= hemispherical emissivity; θ  = non-dimensional temperature; 
 = non-dimensional dimension in the direction of heat 
conduction;  = Stefan-Boltzmann constant
Subscripts

o = base; L = tip; f = fluid; ∞ = ambient, surroundings
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