
Japan J Res.2025; Vol 6 Issue 10 Page 1 of 13

 Original Article

Citation: Fellah A. Exploring a Residual Language Learning Algorithm Through the Lens of L* and Reversal
Alternation. Japan J Res. 2025;6(10):156.

Japan Journal of Research

Exploring a Residual Language Learning Algorithm
Through the Lens of L* and Reversal Alternation

Aziz Fellah
School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA

Correspondence
Aziz Fellah
School of Computer Science and
Information Systems, Northwest Missouri
State University, Maryville, MO 64468,
USA

•	 Received Date: 18 June 2025

•	 Accepted Date: 20 July 2025

•	 Publication Date: 20 Aug 2025

Keywords

Residuality, residual languages, alternation,
residual alternating finite state automata,
learning algorithms, Angluin's algorithm L*.

Copyright

© 2025 Authors. This is an open- access article
distributed under the terms of the Creative
Commons Attribution 4.0 International
license.

Introduction
The concept of Residuality has been

introduced by Denis et al [1,2] in the context
of finite state automata. It is considered
a natural distillation of the essence of the
automaton’s states language recognition.
Residuality adds foundational linguistic
meaning to the automaton’s states in the
context of regular languages and discerns
significant facts from the semantics of each
state of the automaton. In the context of
regular languages, Residual Finite Automata
(RFA) are a subclass of Nondeterministic
Finite Automata (NFA) where each state
represents a language called residual
language of the language recognized by the
NFA. An automaton A accepting a language
L is residual if every state q of A represents
a residual language. That is, if for every
state q of A, there exists a word u such that
the language accepted by Aq, the automaton
A that starts in state q, is the set of all words
v such that uv is in L. In terms of derivatives,
an automaton accepting a language L is
residual if the language of each state is a
derivative of L. In addition, residuality
plays an important role in the context of
machine learning inference, especially in
areas of computer science such as inference
in finite state machines, regular languages,

and grammars, see [3-6].
RFA are introduced as a solution to the

well-known problem of NFA not having
unique minimal (in terms of the number of
states) representatives. The class of RFA
lies between Deterministic Finite Automata
(DFA) and nondeterministic Finite Automata
(NFA). With their own specific properties,
such a refined class of residual automata
allows one to eventually observe each
state independently and describe its formal
semantic subsequently. Additionally, RFA
share in common a number of significant
properties in the context of determinism and
nondeterminism settings. For instance, RFA
share with NFA the existence of automata
that are exponentially smaller, in the number
of states, than the corresponding minimal
DFA for the same language. Importantly,
every DFA exhibits the property of
residuality, which underlines several active
learning algorithm techniques for finite state
automata, such as the seminal algorithm L*

of [3] for learning DFA and the generalized
algorithm NL of [7] for learning NFA. Such
algorithms have provoked a tremendous
amount of research in several areas of
computer science such as machine learning,
artificial intelligence (AI), and software
verification [8-11]. Broadly speaking, formal

Abstract

Residuality Theory has recently emerged as a powerful framework for understanding the learning of
formal languages. It enriches regular languages with linguistic meaning and reveals deeper semantic
layers inherent in their structure. Alternation Theory, where existential and universal quantifiers
interchange during computation, offers a succinct and expressive representation of regular languages.
In this paper, we investigate how residuality and reversal alternation influence the learning of regular
languages, with a foundation grounded in Angluin’s L* algorithm. Building on these theoretical
perspectives, we introduce a trilateral canonical framework called Learner-Teacher-Expert (LTEx),
which incorporates an extended and diverse query set. This leads to the development of a new polynomial-
time learning algorithm, the Residual Reversal-Alternating (RAL*) for learning regular languages.
We demonstrate that the integration of residuality, reversal alternation, and L* enables the learning
of extended regular languages and facilitates their representation as a family of structured finite-state
machines called Residual Alternating Finite Automata (RAFA). Finally, we reflect on these constructs
as conceptual metaphors, proposing them as potential avenues for further research in formal language
learning.

Page 2 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

languages play a significant role in shaping the perspective
of natural language processing, machine learning algorithms,
and data processing. Moreover, regular languages are used
in many applications of AI from pattern matching to image
recognition.

The notion of alternation is a natural generalization of
nondeterminism, receiving its historical and formal treatment
in the seminal paper by [12]. Alternation provides a succinct
representation of regular languages, while residuality adds
a natural meaning to the automaton’s states. This seminal
paper and subsequent research [6,13-15] have focused
on various types, sizes, languages, and computational
complexities of Alternating Finite Automata (AFA). Thus,
alternation has played an important role in understanding
many questions in complexity theory and model checking.
All these automata (i.e., DFA, NFA, AFA, RFA) share the
same expressive power in terms of language recognition
− they all accept regular languages but differ in efficiency.
In terms of the number of states, a minimal DFA might be
exponentially larger than an NFA and double-exponentially
larger than an AFA. Furthermore, the presence of alternation
can lead to simplified construction in finite automata [5,13-
21]. AFA have particularly emerged as practical tools in a
wide variety of applications, such as the extended version
of AFA for learning AL* [22,23], query learning for regular
languages [3,7,22,24], and software model checking [25-27].

These two prominent metaphors, residuality and
alternation, are considered a stepping stone towards machine
learning algorithms. Enlightening and discerning the residual
facts from the semantics of each state of a compacted AFA
is a step towards a better understanding of the learnability
of finite state machines when inferring unknown regular
languages. Angluin’s L* algorithm for inferring an unknown
regular language using membership and equivalence queries
has provoked a tremendous challenge of research in various
directions [5-7,11,23,28,29].

Broadly speaking, we present and extend the framework
of L* as introduced in the original algorithm of [3]. That
is, we extend L* by developing a model that we refer to as
Learner-Teacher-Expert (LTEx). First, our goal is to provide
foundational insights on finite state automata learning. Then,
for learning regular languages, we develop a framework that
is based on L* algorithm by exploring reversal alternation
and residuality techniques, which subsequently infer finite
state automata models from traces. Such a formalism is
composed of three entities, a learner, a teacher, and an expert,
each with a different role.

The learner, who initially knows nothing about the regular
language L, attempts to learn L by interacting with the
teacher. The learner repeatedly makes queries to the teacher,
who typically works in a black-box fashion and has access to
the language in question through the expert. The teacher can
answer straightforward membership and equivalence queries
by further exploiting additional information and knowledge
from the expert. The teacher plays an intermediate role by
refining and forwarding the learner’s residuality and reversal
alternation queries to the expert. What is more important is
the expert’s knowledge of the relationship between different
classes of automata and related languages (i.e., determinism,
nondeterminism, alternation, residual, and reversal). For
example, the states of DFA and all versions of AFA have the
property of residuality, which infers the existence of residual
languages [1,2,29].

The teacher provides an interface (membership and
equivalence queries) for the learner. In turn, the expert
subsequently provides an interface (reversal membership
and equivalence queries) to the teacher. In a membership
query (MQ), the learner chooses a word w and asks the
teacher, “Is the word w ϵ Σ* in the language L?”, where Σ*
is the set of all words over the alphabet Σ. In an equivalence
query (EQ) the learner selects a hypothesis, DFA H, and the
teacher answers whether H recognizes the language L. That
is, whether L(H) = L. The teacher returns either “yes” if the
equivalence query H and the inferred model are equivalent,
otherwise, it submits a counterexample, i.e., a word in
which L differs from the language of H. In comparison
to the teacher, the expert answers two types of queries,
the reversal membership query (r-MQ) and the reversal
equivalence query, (r-EQ). The expert acts in conformance
with the teacher’s potential requests. Our framework forms a
trilateral interaction between the learner, teacher, and expert,
which is summarized in four different query mappings: (a)
Membership Query (MQ), (b) Reversal Membership Query
(r-MQ), (c) Equivalence Query (EQ), and (d) Reversal
Equivalence Query (r-EQ). On the other hand, L* is based
on the classical bilateral interaction between the learner and
teacher.

Furthermore, we encapsulate the two-mode properties,
residuality and alternation, into a more expressive
automaton model that we refer to as Residual Alternating
Finite Automata (RAFA). Then, following the analogical
lines of L*, we reexamine L* algorithm and expend it with
residuality and reversal alternation. That is, we introduce
a new canonical framework that we refer to as Learner-
Teacher-Expert (LTEx), which is regulated with a variety of
queries. Subsequently, this canonical paradigm has led to
an efficient residual alternating learning algorithm that we
refer to as the Residual Reversal-Alternating (RAL*). As a
notational convention in this paper, we denote by the letter
“R” has a double meaning residuality and reversal. Also, we
use the “*” by analogy to the seminal learning algorithm L*.

The remainder of the paper is organized as follows: In
Section 2, we introduce preliminary concepts, notations,
and definitions. Language interpretation, nullable regular
expressions, and languages are described in Section 3.
Section 4 formulates an algebraic language approach and
establishes an underlying algebraic approach. Section 5
covers alternating finite automata (AFA) with straightforward
details, showing that AFA are a suitable framework for
active automata learning algorithms. Furthermore, AFA are
strengthened even more by expressing such automata in
terms of a system of language equations and solving such
equations in Section 6. We also introduce residual language
equations that parallel the solution of algebraic equations.
Section 7 puts emphasize on the related work and background
of derivatives of regular expressions and languages. Section
8 discusses residuality and describes such a property as a
desirable feature in language algorithmic learning. Section
9 extends the aforementioned results of the native AFA in
two directions, language equations over Boolean operations
and residual languages. In Section 10, we introduce two
related frameworks, s-RAFA and rs-RAFA, which lay the
groundwork for the residual-alternating learning algorithm
and establish some fundamental results. In Section 11, we
briefly review the classical learning algorithm L* for DFA
by Angluin, the first of its kind that encapsulates the essence

Page 3 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

of innovation. Along the analogical lines of L* which is
augmented with residuality and reversal alternation, we
introduce in Section 12 a new framework that we refer to
as LTEx, equipped by residuality, reversal alternation, and
a set of queries. We also demonstrate the importance of
reversal alternation and residuality properties, leading to a
new algorithm for learning regular languages called Residual
Reversal-Alternating (RAL*). Finally, in Section 13 we
conclude the paper with a summary and highlight looming
future work and potential research directions.
Preliminaries

In this section, we briefly recall some relevant definitions.
An alphabet is a finite, nonempty set. The elements of an
alphabet are called symbols or letters. A string over an
alphabet Σ is a finite sequence consisting of zero or more
symbols of Σ. Without loss of generality, we assume in the
sequel that alphabets do not contain any of the “special”
symbols: ()(), , , , *, , , ,·, , , .∅ ε ∪ ∩ ∨ ∧ + − The string consisting of
zero letters is called the empty string, denoted by ϵ. The length
of a string w, denoted by |w|. is the number of symbols in
w. By definition, |ϵ| = 0. The set of all strings (respectively,
all nonempty strings) over an alphabet Σ is denoted by
Σ* (respectively, Σ+). A language is said to be nullable if
it contains the empty string, ϵ, that is, a language L is
nullable if ϵ ∈ L. A language L over Σ is a (possibly infinite)
set of finite strings L ⊆ Σ*. We denote the language of
an automaton A by L(A) and the language accepted by
a state q Q∈ by Lq Regular languages are a special class
of languages used in many applications, ranging from
compilers and recent modern languages to web services.
Given a language L over an alphabet Σ, the Kleene star
closure (“∗”) of L is the set *

0 i
iU ∞

=
=L L and the positive Kleene

plus (“+”) of L is the set
1 i

iU ∞+
=

=L L . The language * \= ∑L L is
the complement of L. The concatenation of two strings u and
v is the string consisting of the symbols of u followed by the
symbols of v, denoted u.v. (also often written as uv). We use
the symbol “·” to show the concatenation operation, which
we sometimes omit in this work. We denote the reversal of
a string w by wr, while the reversal of a language L. denoted
Lr, is defined as Lr = { wr |wϵL}. A prefix-closed set is a set
where every prefix of every member is also a member of the
set. For example: {aba, ab, a, baa, b}. A suffix-closed set is a
set where every suffix of every member is also a member
of the set. For example: {abb, bb, b, baa, aa, a}. Finite state
automata, typically deterministic and nondeterministic
versions, are the two fundamental representations of regular
languages. In this paper, we equivalently refer to finite state
automata as finite automata.

A nondeterministic finite state automaton (NFA) is a
quintuple A = (Σ, Q, Q0, δ, F) where Σ is the alphabet, Q is
a finite set of states, Q0 is a set of initial states Q0 ⊆ Q, δ:
Q x Σ→ 2Q is the transition function, and F ⊆ Q is a set of
final states. A is called deterministic finite-state automaton
(DFA) if |Q0| = 1 and δ: Q x Σ→ Q. The transition function δ
can always be extended to δ: Q x Σ*→ 2Q defined as δ (q, ϵ) =
{q} and δ (q, wa) = δ(δ(q,w),a) for q ∈ Q, a ∈ Σ and w ∈ Σ*.
The language accepted by A is

 () ()0{ * | , }w Q w F= ∈∑ δ ∩ ≠ ∅L A

Semantic Interpretation and Emptiness Analysis of
Regular Languages and Expressions

Regular expressions are formal notations for describing
regular languages. Let e denote a regular expression, we

define the regular language of e to be L(e). Furthermore,
we define the set of regular expressions by E over Σ as the
subset of (Σ ∪ {ϵ,∅,+,·,*,-,(,)})* that recursively satisfies
the following conditions:

() { }
()

() () () ()
() ()

1 2

*
1 2 1 2

1 2

 ,

 If e , then

 , · ,

 ,

i E

ii e E

a e e e e e E

b e e e E

∑ ∪ ε ∅ ⊆

∈

+ ∈

∩ ∈

In addition to the above operation of union, concatenation,
and star as defined in (a), regular expressions which include
the intersection (∩) and complement (-) operations as shown
in (b) are called extended regular expressions.

Definition 1: The language interpretation ι of an extended
regular expression e is defined recursively as follows:

.

1 2 1 2

1 2 1 2

1 2 1 2
* *

1 1

1 1

{ }
{ }
() () ()

() () () ()
() () ()
()

()

e
e

a e a a
e e e e e

e e e e e e
e e e e e
e e e

e e e

∅ =∅
 ε
 = ∈Σ
ι + ι = +ι = ι ⋅ ι = ⋅
ι ∩ ι = ∩

ι =
ι =

if
if is nullable
if and
if
if
if
if

if

where e, e1 and e2 ∈ E.

We say that an extended regular expression e is nullable

if the language it represents contains the empty string,
that is if ϵ ∈ L (e). Furthermore, a language L is said
to be nullable if ϵ ∈ L. Formally, the following is a direct
consequence of the nullable definition of L. Thus, we
define the nullable interpretation η of extended regular
expressions e, e1, and e2 as follows:

We can also apply η to E.

() { } ()

if L e
e

otherwise
 ε ε∈

η = 
∅

()
() { }

() ()() ()()
() ()() ()()

() ()() ()()
()()

1 2 1 2

1 2 1 2

1 2 1 2

*

 e e e e

e e e e

e e e e

e

η ∅ =∅

η ε = ε

η + = η +η

η = η η

η ∩ = η ∩η

η = ε

 

L L

L L

L L

Page 4 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

{ } ()
()

()
e

e
e

ε ∅∈
η = ∅ ε∈

if
if

L
L

An Algebraic Approach Language to Language
Theory

Let define by the symbol B the Boolean semiring, B = {0, 1}.
Let Q be a set. Then BQ is the set of all mappings of Q into B.
Note that  Qu B∈ can also be considered as a Q-vector over B.
Let B(X) be the set of Boolean expressions over X with the usual
operation symbols, that is, with , , , ∨ ∧ − including the constants
0 and 1. We now introduce two additional operation symbols
“+” and “.” to form an algebra a T (X, Σ) of terms over X and Σ
with the following properties:

(T1)	 T (X, Σ) contains the two “special” elements denoted
by ∅ and ϵ.

(T2)	 For every w ∈ Σ+ and every () ˆ ˆ, e X w e∈ ⋅B

is a term in

T (X, Σ).
(T3)	 For every t1, t2 ∈ T (X, Σ) also t1 + t2 is a term in

T(X, Σ).
(T4)	 For every w ∈ Σ* and every t ∈ T (X, Σ), w·t also a term

in T (X, Σ).

These operation symbols satisfy the following
conditions:

(T5)	 With respect to +,T (X, Σ) is a commutative band with
∅ as an identity element.

	 With respect to ·,T (X, Σ) is a commutative band with ϵ as
an identity element

(T6)	 For any *
1 2, w w ∈Σ and any ()e X∈ B one has

1 2 1 2· · (· .()())w w e w w e= 

 Moreover, 1· w ∅ = ∅ and 1 1· .w wε =

(T7)	 One  () () ()1 2 1 2 · · · · w e e w e w e= +

has and ()1 2 1 2· . .w t t w t w t+ = +

for all w∈∑ all   ()1 2, , e e X∈B and all 1 2, t t ∈ T (X, Σ).

The terms in T (X, Σ) have a simple normal form as shown in
the following result:

Lemma 1 Every term t in T (X, Σ) can be effectively transformed
into the form:

1

n

i
i

t
=
∑

for some n ∈ N such that every ti is a term of one of the forms
, · , , ˆ ·i i i i i i it t w t or t w e= ε = ε = ∅ = .

With wi ∈ Σ* and ()ˆ ;ie X∈B in addition, one may assume
that each îe is a Boolean constant or a conjunction of variables
or their negations. Moreover, the terms ti are distinct and, if ti =
∅ for some i, then i = n = 1.

Proof: By the construction of T (X, Σ), every term has the
form Σti where every ti is of one of the above forms. Assume
that ·ˆi i it w e= with îe not a constant or a conjunction of
variables or their negations. Then îe can be re-written as a
disjunction of conjunctions of variables and their negations.
The application of the property (T7) then yields the required

form. By (T5), no term occurs twice, and ∅ can be omitted as
a term unless it is the only one.

Thus, we have constructed a sorted algebra as
follows:
() ()()*, , , , · , , , , , , ,1 , 0 X X∑ ∑ + ε ∅ ∧ ∨T B

which we also denote by T (X, Σ). The underlying sets of this
algebra are T (X, Σ), Σ*, and B(X). In this algebra one has the
binary operations

()() () ()
() () ()
() () ()
() () ()

*· : , ,

: , , ,

 :

:

T X X X

X X X

X X X

X X X

∑ × ∑ ∪ → ∑

+ ∑ × ∑ → ∑

∧ × →

∨ × →

B T

 T T T

B B B

B B B

The unary operation: () (): X X→B B

and the nullary operations:
() (), , and 0,1 X Xε ∅ ∈ ∑ ∈ T B

We now introduce language interpretations ιλ of elements
of this algebra. Again, we use the symbol ι because we are
extending the interpretation of regular expressions. Let
λ be a homomorphism of the algebra ()(, , , ,1 , 0)X ∧ ∨ −B into
the algebra *() *(2 , , , , ,)∑ ∩ ∪ ∑ ∅ where the symbol “⎼” denotes
complement with respect to Σ*. The interpretation ιλ is a
homomorphism of the algebra T (X,Σ) with the operations
·, , , , , , ,1 , 0 + ε ∅ ∧ ∨
into the set *

2∑ with the operations
{ } *·, , , , , , , , ∪ ∅ ∩ ∪ Σε ∅

which satisfies the following:
() { } { } · ˆ ˆw e w eλι = λ

for all w ∈ Σ* and all ()ˆ .e X∈B Note that any mapping
 : 2X ∑λ → can be uniquely extended to a homomorphism

of B(X) into *

2 ,∑ and hence, gives rise to a unique language
interpretation, again denoted by ιλ.

Alternating Finite Automata (AFA)
Alternating finite automata (AFA) exhibits the property

of alternation in the following sense: If in a given state
q, the automaton reads an input symbol a, it activates all
states of the automaton to work on the remaining part of
the input in parallel. Once the states have completed their
tasks, q evaluates their results using a Boolean function
and passes on the resulting value by which it was activated.
A string w is accepted by an AFA if there exists some path
that leads to an accepting state. More precisely, a string w
is accepted if the starting state computes the values of 1.
Otherwise, it is rejected. In a nondeterministic computation,
all configurations are existantial in the sense that there
exists at least one successful path that leads to acceptance.
An AFA may also have universal configurations from which
the computation branches into a number of parallel
computations that must all lead to acceptance. We represent
existential and universal choices by a Boolean formula.
Formally, let Q be a finite set of states, we use BQ to be the

Page 5 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

set of all Boolean formulas over Q. That is, BQ is built from the
elements q ∈ Q, 1 and 0 using the binary operations or () ,∨

and (),∧ and not (⎼).We now formalize this idea.

Definition 2 An alternating finite automaton (AFA) is a
quintuple A = (Σ, Q, s, F, g) where (a) Σ is an alphabet, the
input alphabet; (b) Q is a finite set, the set of states; (c) s ∈ Q
is the starting state; (d) F ⊆ Q is the set of final states; (e) g is
a mapping of Q into the set of all mappings of Σ x BQ into B.

Now, we turn to defining the sequential behavior of an
AFA. For q ∈ Q and a ∈ Σ, let gq(a) be the Boolean function
defined as:

() ˆ : , Q
qg a u ∑× →B  B

where a ∈ Σ and û ∈ BQ. Also, for a ∈ Σ, q ∈ Q and

û ∈ BQ, gq(a,

û), = gq(a) (û) is equal to either 0 or 1. Later, we also need the
mappings g (a) of Q into the set of all mappings of BQ into B
and the mappings gp (a) of BQ into B defined by

()()() ()() ()ˆ ˆ,ˆ p pg a q u g a u g a u= =

 for a ∈ Σ, q ∈ Q, and û ∈ BQ

 Now define f ∈ BQ by the condition

1 qf q F= ⇔ ∈

f is called the characteristic vector of F. We extend g to a
mapping of Q into the set of all mappings of Σ* x BQ into B as
follows:

()
() *

,

(, ,

ˆ
 , ˆ

q
q

q

u if w
g w u

g a g v u if w av with a v

=ε= 
= ∈∑ ∈∑

where w ∈ Σ* and û ∈ BQ.

Definition 3 Let A = (Q, Σ, s, F, g) be an AFA. A string w
∈ Σ* is accepted by A if and only if gs(w, f)=1. The language
accepted by A is the set

 () () { | * , 1}.SA w w g w f= ∈∑ ∧ =L

We denote the language of A by L(A) and the language
accepted by a state q ∈ Q by Lq.Note that in the same spirit
as the characteristic vector of F, we extend g to languages.
Thus, we define the characteristic output of ˆ, (,),g w uAA as
follows:

Definition 4 Let be A = (Σ, Q, s, F, g) an AFA and L(A) the
language accepted by A. Then, the characteristic output of
Ais defined as:

() () ()1 , 1
,

0

ˆ

ˆ qif g w u for all w L A

g w u
otherwise

= ∈= 


A

Example 1 Consider the following AFA A = (Q, Σ, s, F, g)
where Q = {q0, q1, q2}, Σ {a, b}, s = {q0}, F = {q2}, and g is given
by the following Table 1.

The existential and universal states as represented as
 ,and∨ ∧ respectively. The AFA can have multiple runs on a

given input where both choices coexist. Notice that the run
branches in parallel to the two states q0 and q2 on the second
input symbol b from q1 as shown in Table 1 and graphically
in Figure 1. In addition, there are three separate mappings
of BQ into B. That is, g(q0), g(q1), and g(q2) represent Boolean

value of true 1 or false 0 as shown in Table 2.

Example 2 Let w = bab be a string. We will check whether
the input w is accepted by the above AFA A.

()
() ()

() () ()()()
() ()() () ()() ()() ()()

() () ()()
() () ()()

()

0

1 2

0 0 1

1 2 1 2 0 2

,

 , ,

 g , g , g ,

 , , , , , ,

 0 1 0 1 0 1

 0 0 0 0 1 1

 (0) 0 (1)

 0 0

q

q q

q q q

q q q q q q

g bab f

g ab f g ab f

b f b f b f

g f g f g f g f g f g f

= ∨

= ∨ ∨

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨

= ∨ ∨

 
 
 

  
 

     

() 0

 0 (0)
 0 1
 1

= ∨
= ∨
=

By Definition 3, the characteristic output of the
computation is equal to 1 and the string bab is accepted by
the AFA A.

We now introduce the notion of reversal AFA (r-AFA)
which can be seen as an AFA except that it reads its input
in reverse order. Moreover, such automata are usually used
for implementing regular languages and their operations
efficiently, as summarized in the next theorem. We will adapt
and extend r-AFA far beyond their original scope [6, 19, 21].
That is, we will exploit such results in the context of learning

States a b

q0 q0 ˄ q1
1 2q q∨

q1 q0
0 2q q∧

q2
0 1 q q 1

Table 1. AFA’s state table

states g (q0) g (q1) g (q2)
q0 q1 q2 a b a b a b

0 0 0 0 ① 0 0 ① ①
0 0 1 0 0 0 ① ① ①
0 1 0 0 ① 0 0 0 ①
0 1 1 0 ① 0 ① 0 ①
1 0 0 0 ① ① 0 ① ①
1 0 1 0 0 ① 0 ① ①
1 1 0 ① ① ① 0 ① ①
1 1 1 ① ① ① 0 ① ①

Table 2: g (q0), g (q1), and g (q2)

Page 6 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

algorithms of regular languages and automata inference as
in Sections 10 and 12.

Theorem 1 (DFA, r-AFA) ([6, 21]).

If L is accepted by an n-state complete DFA then L is
accepted by an r-AFA with at most [log2n] states.

System of Language Equations: An Interpretation of
AFA

Language equations are equations defined over languages
where both the constants and variables are formal languages.
Usually, they are formalized through various classes of finite
state automata such as deterministic, nondeterministic,
and universal finite automata. It is well-known that regular
languages can be described as the solutions of systems of one-
sided linear equations in an appropriate semiring [25, 30, 31].
These systems of equations can be easily generated by DFA
or one-sided linear grammars. In this section we follow a
“similar” idea and show that AFA can be readily represented
by systems of equations. However, the systems of equations to
be considered involve Boolean expressions over a finite set X
of variables and the symbols of an alphabet B. The main result
of this section is that the solutions of such systems of equations
are precisely the regular languages and that, indeed, there is
a natural correspondence between AFA and such systems of
equations. In the sequel, we associate with each AFA a system
of equations such that the languages accepted by the AFA with
various start states constitute the unique fixpoint of the system
of equations. Let A = (B, Q, q, F, g) be an AFA. For q ∈ Q, we
use xq to denote a Boolean variable associated with the state q
and xq to denote its negation. Let Xq = {xq | q ∈ Q}. Then the
following system) of equations can be used to describe A:

 () () ()

 , ˆq q q q
a q Q

X a g a X f
εΣ ε

 
= = + ε 
 

∑ 

L A (1)

 where X is the vector of variables (), , , q px q Q g a Xε is
being given by a Boolean expression in B (X q) , and

() 1

q
q

if f
f

otherwise
ε =

ε = ∅

The solution of this canonical representation of ()L A
, which can always be constructed via several systems of
language equations, exists and uniquely defined [21,32].

The Uniqueness Solution of Language Equations
Deterministic, nondeterministic, and universal finite automata

can be represented by system of language equations with two
operations, union and concatenation. The relevant properties
of these equations, such that existence and uniqueness of their
solutions have been established in the literature [21, 32].

Theorem 2 Let x= e1x + e2 be an equation in the x, where e1
and e2 are regular expression.
Then *

1 2x e e= is the solution of the equation. Furthermore, this
solution is regular if e1 and e2 are regular.

Proof: If *
1 2x e e= is the solution, then we have to show that

* *
1 2 1 1 2 2 2)(e e e e e e= + (2)

The problem of deciding whether two regular expressions are
equivalent is reduced of deciding whether the two language
interpretations denoted by the two sides of the equation
(2) are the same. That is, ()* *

1 2 1 1 2 2).(e e e e e eι = ι + Assume that
*
1 2 ,w e e∈ then w can be written as w = w1w2, where *

1 1w e∈ and
w2 ∈ e2. If w1 ≠ ϵ then *

1 1 1w e e∈ where * *
1 1 1 1 2ee e e e⊂ + . If w1 = ϵ then

2 2 ,w w e= ∈ where *
2 1 1 2e e e e⊂ + . Thus, the left-side hand of the

equation (2) is a subset of the right-side hand.
Conversely, assume that *

1 1 2 2.w e e e e= + If *
1 1 2 ,w e e e= then

*
1 2 ,w e e= and if w ∈ e2, then w is also in *

1 2.e e Therefore, in (2)
the right-side hand is a subset of the left-side hand. Thus, we
have proved the theorem.	
The following theorem gives a sufficient condition for the
uniqueness of the solution of Theorem 3.

Theorem 3 Let 1 2x e x e= + be an equation, and *
1 2x e e= be its

solution. Let 1)(eι be the language interpretation of e1. If ϵ ∉ι(e1),
then the solution *

1 2x e e= is unique.

Proof: ϵ ∉ ι(e1) is a sufficient condition for the uniqueness
of the solution *

1 2x e e= . Assume that there exist two solutions x1
and x2 such that 1 2x x≠ which satisfy equation 1 2.x e x e= + Then,
we have

1 1 1 2

2 1 2 2

 (3)
 (4)

x e x e
x e x e
= +
= +

Since 1 2x x≠ , then () ()1 2 .x xι ≠ ι Therefore, there exists a word
w such that 1 2)(anw x d x∈ ∉ or 1 2 .()nw x wa xd∉ ∈ Without loss
of generality, assume that w ∈ x1 and w ∈ x2; let w be such word
of the shortest length (w need not to be unique). If there exists w’
∈ x1 such that ,w w′ 〈 then w’ ∈ x2 . Since w ∈ x1, then from (3), w
∈ e1x1 or w ∈ e2. But w shouldn’t belong to e2, because, by (4) w
would belong to x2. Thus, w can be written as w = w1w2, where
w1 ∈ e1 and w2 ∈ x1. Since ϵ ∉ e1, then the word w1≠ ϵ, therefore
the length of w2 is strictly less than the length of w, in addition,
we also know that w2 ∈ x2 since 2 .w w〈 This implies that w1 w2,
and consequently w belongs to e1x2. Thus, w1, w2, and w belong
to x2 by (4). This is a contradiction with our hypothesis and the
choice of w.

Corollary 1 Let X be the set of Boolean variables, and ()1eι
and () *

2 eι ⊆∑ are language interpretations generated by e1
and e2, respectively. The language equation h as a solution

() ()1 2 X e X e= ι + ι . Furthermore, the solution is unique if ϵ
∉ ι(e1).

Figure 1: An alternating finite automaton (AFA).

Page 7 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

Theorem 4
()

()
()
() () ()
() ()
() () ()
() ()

1 2 1 2

* *
1 1 1

1 2 1 2

1 1

(

)
a

a

a

a

a a a

a a

a a a

a a

a

b if b a

e e e e

e e e

e e e e

e e

∂ φ =∅

∂ =∅

∂ =

∂ =∅ ≠

∂ + =∂ +∂

∂ =∂

∂ ∩ =∂ ∩∂

ε

∂

ε

∂ =

() () ()
()

a 1 2 a 2 2
a 1 2

a 1 2

e e e if e is nullable

e e
e e otherwise

∂ +∂∂ = ∂


The last equation takes the symbol a off of the first expression
e1 or from the second regular expression e2 if L(e1) is nullable
(i.e., the empty string ϵ∈ L(e1).

Example 4 Let Σ = {a, b}.
•	 Let e = a (a b) * . Then the derivatives of e with respect

to a and b respectively are () () ()* .a be ab and e∂ = ∂ =φ
•	 Let e = a (a b + a) * b a . Then the derivative of e with

respect to a using auxiliary properties and calculations
is:

() ()()
()() ()

()()() ()
() ()()() ()

()() ()
()()

*

*

*

*

*

*

a a

a a

a a

a a a

a

e ab a ba

ab a ba ba

ab a ab b ba b a

ab a ab a ba b a

b ab a ba b a

b ab a ba

b

∂ = ∂ +

= ∂ + +∂

= ∂ + + +∂

= ∂ +∂ + +∂

= +ε + +∂

= +ε + +φ

=()()* . ab a ba+ε +

In a similar manner, we can compute the derivative of
e with respect to b, that is, ().b e In addition, the concept
of derivatives applies to languages. For a language L,
the derivative of L with respect to a string w is the set of
remaining strings after having read w from any string in L,
formally defined as follows:

Definition 6 The derivative of a language L *L ⊆ ∑ with respect
to a string * w∈∑ is defined by () *{ | }.w v wv∂ = ∈ ∑ ∈L    L

The following two properties are a consequence from the
definition of the derivative.

()
() ()()

 ua a u

∂ =

∂ =∂ ∂

L L

L L
ò

where * w∈∑ and .∈∑

Proposition 1 Let * , ,a w∈∑ ∈∑ and .e E∈ Then () aw e∈ L if
()() aw e∈ ∂L and ϵ∈ L(e1). if and only if nullable (e) .

Learning Regular Languages Through Residuality
In this section, we show that residualizing canonical AFA

through a generalized reversal alternation methodology leads
to the construction of DFA that recognizes regular languages.
Residuality is considered a natural distillation of the essence

The above Corollary is an extension of Arden’s rule [33] and
Theorem 3 to language equations.

Example 3 Given the NFA A = (Q, Σ, Q0, F, 𝛿), where
Q = {x1, x2, x3}, Σ = {a, b}, Q0 = x1, F = {x3} and is given
by the following system of language equations. The regular
language L(A) generated by A is obtained by solving the
following system of language equations. Let A be an NFA
as depicted below.

Figure 2: () () ()*x a a ab b= = + Σ +L A L

Lx1 = aLx1 − aLx2 + bLx3
Lx2 = ΣLx1 + bLx3
Lx3 = ϵ

Using backward propagation yields the solution Lx1 which
is obtained by using a series of substitutions of Theorem 3
and Corollary 1 as follows:

()

1 1 2

2 1

1 1 1

1 1 1

1 1

1

()
()*()

x x x

x x

x x x

x x x

x x

x

a a b
b

a a b b
a a ab b
a a ab b
a a ab b

= + +
= ∑ +

= + ∑ + +

= + ∑ + +
= + ∑ + +
= + ∑ +

L L L
L L

L L L

L L L
L L
L

Derivatives of Regular Expressions and Regular
Languages
The notion of derivative regular expressions has been
introduced by Brzozowski [34] for finding the quotient of
regular expressions and providing corresponding derivatives
and their auxiliary functions. Let e be an extended regular
expression, and u is a string over Σ*. We denote by ()u e∂ the
derivative of e with respect to u, which is formally defined
as follows:

Definition 5 The derivative of an extended regular
expression e with respect to a string * u∈∑ is defined to as:

() * | u e v uv e∂ = ∈∑ ∈ and () * { | }u v wv∂ = ∈∑ ∈L L .

Intuitively, ()u e∂ is the set of all remaining strings obtainable
from e by taking off the prefix u, if possible. The derivatives
of an extended regular expression e with respect to a symbol

 a∈∑ are defined as follows:

a

Page 8 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

of the automaton’s states language recognition. Importantly,
it adds a foundational meaning for a better understanding
of regular language learning algorithms and computational
learning theory. Residual finite state automata (RFA) [1] are a
subclass of NFA where each state represents a residual language
of the language that is accepted by the automaton. The class of
RFA lies between DFA and NFA, and they share in common a
number of significant properties. For instance, RFA share with
NFA the existence of automata that are exponentially smaller, in
terms of the number of states, than the corresponding minimal
DFA for the same language. For more details, see Introduction,
Section 1.

Definition 7 A residual finite automaton (RFA) R = (Σ, Q, s, F,
δ) is a nondeterministic finite automaton (NFA) where for every
state q ∈ Q, L(Rq) is a residual language ∈ L(R).

The class of RFA lies between DFA and NFA, and they share
in common a number of significant properties. For instance, RFA
share with NFA the existence of automata that are exponentially
smaller, in terms of the number of states, than the corresponding
minimal DFA for the same language. These properties make
RFA particularly appealing in severalareas of computer science
such as pattern recognition, computational biology, and software
verification. Moreover, residual languages play an important
role in many state machine inference algorithms, particularly
in identifying residual languages and actively learning regular
languages from queries and counterexamples.

Let A = (Q, Σ, q, F, δ) be a finite state automaton. The language
L(A) is the set of all accepted strings by A. For a state q ∈ Q,
we write Aq for the automaton that starts in the configuration
(i.e., state) q.

Definition 8 A language * q∈∑L is a residual language of L if
there is * w∈∑ such that () ,q w=∂L L where () * { | }.w v wv∂ = ∈∑ ∈L L

For notational purpose, we use Lq to indicate the residual

 () () () () ()
0 1 2 4 , , , ., q a q q qRes α β∂ε = ∂ = ∂ = ∂ =L L L L L L L L L

where αand * , a b+β∈∑ α= and β
An automaton A accepting a language L is residual if every

state q of A corresponds to a residual language (equivalent
to residual in this paper). However, the reverse is not always
true. That is, not every residual language should be accepted
by a unique state. To this end, several states may accept the
same residual language. Consequently, we categorize the
set of residual languages as prime and composed residual
languages, formally defined as follows:

Definition 9 A residual language L' with respect to a
string * w∈∑ is called prime () () () (){ | } .v v w w∂ ∂ ∂ ∂ L L L L
Otherwise, L' is called composed. In other words L' is a
residual prime if there are ()1 2 \, ... { '}n Res∈L L L L L such that

1 2' . . . n≠ ∪ ∪ ∪L L L L .

Definition 10 A residual alternating finite automata (RAFA)
(). , ,ˆ , , Q s F g= ∑ is an alternating finite automaton (AFA) such

that for every state () , qq Q∈ L A is a residual language ()ˆ∈L A .

Similar to AFA and better suited than RFA, RAFA (Residual
Alternating Finite Automata) are double-exponentially more
succinct than DFA, making them the preferable automaton
model to work with in practical learning algorithms. We will
show in the remaining of the paper that RAFA is double
exponentially than the size of the corresponding minimal
DFA but are usually even considerably smaller and easier
to learn.

Given a RAFA (). , ,ˆ , , Q s F g= ∑A recognizing the set of
regular languages, () ,Res L a state q Q∈ is called prime if
it recognizes a prime residual language of L. That is, ()∈L A
Prime (L). A residual is called composed, if it is the non-trivial
union of other residuals. Otherwise, it is called prime residual
language.

Lemma 2 Let () ˆ , , , , Q s F g= ΣA be a RAFA. For every prime
residual language ()' (,ˆ

w∂L L A there exists a state q Q∈ such that
() ().ˆ(q w= ∂L A L A

Residual Language Equations
In this section, we extend the aforementioned results of the
native AFA in two directions: First, we consider language
equations over Boolean operations and show the existence
of solutions. Second, of special interest are the semantics
of residual alternating finite automata in terms of residual
languages over finite words. Let () ˆ , , , , Q s F g= ∑A be a residual
alternating finite automaton (RAFA) and let ()0 , . . . , .qX X X=
We use qX to denote a Boolean variable associated with the
state q and qx to denote its negation. Let { | }q qX x q Q= ∈ . Then
the following collection of language equations, () ,qL A identify
the set of residual languages of L.

() () ()

 , ˆq q q q
a q Q

X a g a X f
εΣ ε

 
= = + ε 
 

∑ 

L A (5)

a

language of state q. Let ()0 , , , , Q Q F= Σ δA be a DFA.
Q = {q0, q1, q2, q3, q4}, { } { }0 0, , , a b Q qΣ = = { }2 3, F q q= and δ

as shown in the following graph in Figure 3.
Now, we derive a simple set of residual languages of L,
denoted by

Figure 3: () () ()
0

 q q a b a b b b
++ + + += = + ε+ ∑ + ∑L A L

Page 9 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

() () 1

ˆ

q
q

if f
f

otherwise

ε == 
∅



where ()ˆ , qg a X is the set-operation interpretation of the
Boolean function (), , ,g a X q Q∈ and .a∈∑

Similarly to L(A) the language ()ˆL A is the set of all accepted
strings by A. For a state ,q Q∈ , we write Aq for the automaton

() , , , , Q q F g= ∑A that starts in the configuration q instead of s.
Let L and *, w∈∑ we denote by the derivative of L with respect
to w. * L′∈∑ is a residual language of L if there is * w∈∑ such
that ()' .w=∂L L Then the following theorem describes the
system of residual language equations:

Theorem 5 Let () , , , , ˆ Q s F g= ∑A be a residual alternating finite
automaton (RAFA),)(Res L the set of residual languages of ,



A
and { }q q Q

X
∈

 be the solution of the language equations. Then the
following claims hold:

() ()
() ()
() () ()() ()
() () () ()() ()

s

q q

q w w q

w w w s

ˆ

ˆ

ˆ

i X

ii X

iii X

iv Res X

=

=

= ∂ = ∂

= ∂ = ∂ = ∂

L A

L A

L A L A

L L L A

Proof: (i) Let  ()q , , , , ,Q s F g= ΣA q Q∈ We prove that ()q qX=L A

for all q Q∈ . Since s ,ˆ =A A ()s . sX=L A We prove this for any *, w∈∑
if and only if gq (ϵ, f) = 1 by induction on the length of w. If

 0.w = i.e., w = ϵ, then ϵ ∈ Xq if and only if gq (ϵ, f) = 1 because
gq (ϵ, f) = fq and by definition () fqε = ε if and only if 1 .qf =

Assume that any * w∈∑ such that , qw k w X< ∈ if and only if
gq (ϵ, f) = 1 Consider * w∈∑ such that ,w k< where k > 0. Let

0 . w aw= (), 1 qg w f = if and only if (), 1 qg a u = and ()0 , .u g w f=
By induction hypothesis, 1 pu = if and only if 0 qw X∈ for all p ∈
Q. Therefore, gq (w, f) = 1 if and only if w0 ∈ gq(a,u) and if and
only if .qw X∈
 The proof of each of the above claims, (ii), (iii), and (iv)
follow in turn the same induction pattern than that of (i).
That is, on the length of the string w and in terms of the

derivative of a language. That is, the set ()()w q∂ L A which is the
set of stings in L with the prefix w. The last claim asserts a set
of characteristic equations where Xs is exactly the language
accepted by Â�.
 The most significant property of residual automata (RFA)
is that it performs the semantics of each state independently,
which makes RFA appealing in several areas of research
in computer science. In the grammatical inference and
finite state automata settings, residuality underlies the
seminal algorithm L* for learning deterministic automata
[3] and building other efficient algorithms for learning
nondeterministic and alternating automata, NL and AL*.
Now, we illustrate and compile the system of residual
language equations for the AFA from Table 1 and Figure
1.

() ()0 1 1 q q q q qa b= ∧ + ∨L L L L L

()
0 21 0 q q qqa b= + ∧L L L L

()
12 0 1 q q qa b= ∨ + +εL L L

Reversal-Alternating State Machine Framework for
Learning Residual Languages

Learning regular sets from queries and counterexamples by
[3] forms the basis of many modern state machine inference
algorithms. With respect to the minimization of RAFA, we
consider a special kind of RAFA that we call s-RAFA. An
s-RAFA is an RAFA  () , , , , Q s F g= ΣA such as every a a∈∑ and
every ˆ , Qu B∈ , ()ˆ, ,qg a u does not depend on bus. Intuitively,
this means that the starting states cannot be reached in any
computation. Obviously, for every RAFA one construct an
equivalent s-RAFA which has just one more state. On the
other hand, if Â is () 1 a k + state s-RAFA then there exists an
equivalent k-state RAFA. For example, the language { }2, , a aε is
accepted by a 3-state s-RAFA but not by any 2-state RAFA. The
s-RAFA are particularly useful to simplify certain constructions
of regular language learning algorithms.

Theorem 6 Let L be a language andLr be the reverse of L.
L is accepted by an s-RAFA with k + 1 states if and only if
Lr is accepted by a DFA with 2k states.

Proof: We show the proof by construction. Let (), , , , .Q s F= Σ δ   
be a 2k-state DFA. Let {1, 2, . . . , K k= and { }0 0 .K K= ∪ Without
loss of generality, we assume that KQ = B and { } 0, . . . , 0 .s =
For 0 , ˆ Ku∈B let ' Ku ∈B be defined by ' ˆu u= for all .i K∈ Now, we
define a (k + 1)-state s-RAFA ()ˆ ˆ ˆ ˆ , , , , Q s F g= Σ

A A A
A by

0ˆQ K=
A

ˆ 0s =
A

{ } ˆ
ˆ

0 if

0 otherwise

s F
F

 ∈=


 A
A

() ()' '

'

, if 0 and

1 if 0a

ˆ ˆ

ˆ nd
i

u a i u F
f x

i u F

 δ = ∈= 
= ∉





For 0 , i K∈ a∈∑ and 0ˆ Ku∈B . The function g is well defined
since Â is an alternating residual finite automaton. By
induction on the length of * , w∈∑ one shows that ()ˆ , u g w f=
if and only if ()  , 'rs w uδ = 

. Since 0 1 u = if and only if ' ,u F∈ 
and () ˆw∈L A if only if () rw ∈L  .

Corollary 2 For any RAFA, there exists an equivalent s-RAFA
having at most one additional state.

For RAFA, we adopt the concept of r-AFA introduced in
Section 5, inspired by the work of [19,21,32], and extend
to RAFA in this paper. Now, we introduce a variant of
s-RAFA called rs-RAFA (with “r” indicating reversal and
“s” indicating that the starting state cannot be reached in
any computation). The rs-RAFA operates similarly to an
s-RAFA, but with the input string read in reverse The rs-
RAFA framework serves as the foundation for the learning
algorithm designed for RAFA. The following theorem
naturally follows from the results presented earlier in
Theorem 1, Theorem 6, and Corollary 2.

Page 10 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

Theorem 7 For each language L that is accepted by a DFA
with n states, there exists an equivalent rs-RAFA with at
most1 + [(log2 n)] states.

We now formulate a new paradigm for inferring a state
machine model learning algorithm, residual alternating
finite automata represented as a system of residual language
equations, which uses active state machine learning
algorithms for learning regular sets. rs-RAFA



(, , , ,)R Q s F g= ∑
can be described naturally as a set of residual language
equations that parallels the solutions of algebraic equations.
Moreover, the solution of such systems of residual equations
is the class of regular languages. Then the following system
()ˆL R of residual language equations can be used to describe

ˆ :R

() () () ()

() ()

. , 6

 1

q q q
a q Q

q
q

Res X a g a X f

if f
f

otherwise

ε∑ ε

 
= = + ε 
 

 ε =ε = 
∅

∑L

(6)

In the system ()Res L of equations, (),qg a X and have been
defined earlier. The Boolean function (),qg a X is considered
as being given by a Boolean expression in qXB . Any system
of residual language equations of the above form has a unique
solution for each , qX q Q∈ . Furthermore, the solution for
each qX is regular. The system of equations (6) corresponds
to the set of residual language equations of L. That is, each
residual language equation exactly corresponds to the states
of ˆ . That is, there is a bijection between residual language
equations of L and the states of the minimal rs-RAFA.

Angluin’s-Style L* Learning algorithm
We briefly review the classical automata learning algorithm

L* by Angluin [3]. The algorithm L* demonstrates that the
class of regular language could be learned efficiently by
fully constructing the minimal DFA. A for a given regular
language L such that L (A)=L .Such a minimal DFA is
learned using membership and equivalence queries between
a learner and teacher. To do this, the learner may ask the
teacher, who knows about the language, two types of classical
queries:

Membership Queries: The learner selects a word * w∈ ∑
in the target language and the teacher replies whether or not
w∈L .

Equivalence Queries: Does a given hypothesis automata
(H) recognize the target language? That is, whether
L=L(H)? The learner selects a hypothesis automaton H, and
the teacher answers whether or not L is the language of H.
If yes, then the algorithms terminate; otherwise, the teachers
provides a counterexample, which is a word in the symmetric
difference of L and L(H).

The learner maintains an observation table T (rows, cols)
over two finite sets *, S E ⊆ ∑ respectively. For any u∈ and

() , , 1u a T u a∈ ∑ = if and only if the word ua∈L . In other

words, T has one complete row of derivatives. Intuitively,
each row of T approximates a derivative of the target language
L. However, the content of T may be incomplete because no
membership queries have not been asked yet for some words w.
The table T is closed if one-letter derivatives are in the table.
Intuitively, membership query words are used by the learner
to identify the different derivatives of the target language L,
enabling the construction of an automaton from T. Broadly,
based on the observed behavior, the learner can infer a model
of the canonical DFA for L, by formulating a polynomial set
of membership queries. It is important to highlight that the
L* algorithm encapsulates the essence of innovation, and it is
the first of its kind [3]. The class of regular languages could
be learned efficiently (i.e., in time polynomial in the size of
the canonical DFA for the language L. Many implementation
details are omitted in this section, and we will be discussed
and exploited in the next sections.
Revisiting L* through Residual Language Learning
and Reversal Alternation

Indeed, while regular languages may pose challenges for
learning using residual alternating finite automata (RAFA),
this paper focuses on a particular subtype of RAFA known as
rs-RAFA. This specialized form of RAFA, with its properties
of reversal alternation and residuality, can be efficiently
learned along the analogical lines of L*. The combination of
reversal alternation and residuality in rs-RAFA renders them
exponentially more concise than DFA making them valuable
tools for learning regular languages.

Definition 11 Given a learner-teacher-expert (LTEx) framework
capable of answering classical and reversal membership and
equivalence queries, the active learning task is to construct
the minimal RAFA (rs-RAFA) and consequently deriving the
minimal DFA for an unknown regular language L over ∑ in
polynomial time.

Now, we describe an enrichment of the standard framework
L* for learning regular languages by introducing additional
information and various types of queries. Specifically, we
introduce an extension of membership and equivalence queries
known as reversal membership and equivalence queries. In these
queries, the input is consumed in reverse, and the correct- ness
of the reversed hypothesized RAFA H is assessed. Theorems 6
and 7 provide further details and insights into these extensions.
A learner wants to learn a regular language L over a fixed
alphabet ∑ represented by a specific type of finite automata,
namely residual alternating finite automata (RAFA). This
learning framework model is featured by a teacher and an expert
who define the active learnability according to their capabilities
and access to information about the target language. The RAL*
active learning algorithm is distinguished by its capability for
query refinement, facilitated by the teacher’s ability to seek
assistance from the expert to fulfill the request of the learner.

Importantly, we distinguish between the roles of the teacher
and expert. The teacher plays an intermediate role by refining
and forwarding the learner’s queries to the expert. While the
teacher can address basic membership and equivalence queries,
it also has access to supplementary knowledge from the expert.
In comparison to the teacher, the expert answers reversal

Page 11 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

membership query r-MQ and reversal equivalence query (r-
EQ). The expert provides accurate and insightful responses to
queries related to reverse operations and equivalence between
different types of automata, namely rs-RAFA and DFA.

Ask To this end, the learner repeatedly makes queries to
the teacher, typically operating in a black-box fashion and
accessing the language in question through the expert. Unlike
the standard version of Angluin’s algorithm, which forms
the basis of L* the active learning process in our framework
involves a trilateral interaction between three components: the
learner, teacher, and expert. This interaction is summarized in
four mappings: (a) a membership query between the learner
and teacher, (b) a reversal membership query between the
teacher and expert, (c) an equivalence query between the
learner and teacher, and (d) a reversal equivalence query
between the teacher and expert. The teacher has access
to the language in question through the expert and can answer
two different types of queries: membership query (MQ) and
equivalence query (EQ). The expert has access to the language
in question through the conversion of rs-RAFA and DFA and
can answer two different types of queries: reversal membership
query (r-MQ) and reversal equivalence query (r-EQ). These
results are stated in Theorems 6 and 7, depicted in Figure 4,
and highlighted in Algorithm 1.

Algorithm 1 Learner-Teacher-Expert (LTEx).

(a)	 Learner-Teacher: The membership query () MQ L consists
in asking the teacher if a word * w∈ ∑ ∈L (RAFA). The
teacher reformulates the request and forwards it to the
expert who replies “yes” or “no” depending on whether

 rw∈ L or not.
(b)	 Teacher-Expert: The reversal membership query is

r-MQ consists in asking the expert if a word * w in ∑ ∈ L
(RAFA) (Theorems 6 and 7). The experts “yes” or “no”
depending on whether rw L∈ (RAFA) or “not”

(c)	 Learner-Teacher consists in asking the teacher whether a
hypothesis RAFA ()L H is correct, i.e., whether ()=L H  L

The teacher answers “yes” ()L H

of is correct or returns a

counterexample.
(d)	 Teacher-Expert: The reversal equivalence query r-EQ

consists in asking the expert to use the relationship
between RAFA (i.e., rs-RAFA) and DFA). That is,
whether () r rH =L L (RAFA). The expert answers “yes”
if H is correct or returns a counter example.

The learner interactively refines the learner’s request
by querying the expert. The expert, possessing complete
knowledge, helps generalize the partial knowledge of
the teacher, who guides the learner. Consequently, the
RAL* algorithm produces an RAFA that is isomorphic
to the canonical minimal RAFA of the target language L.
Throughout the learning process, the learner maintains
and updates two sets: a prefix-closed set *⊆∑U  containing
candidate words for identifying states, and a suffix-closed
set *⊆∑  containing words used to distinguish these states.
Both sets, u and v, contain the empty string ϵ. By issuing
membership queries, the learner determines whether all
strings uv∈ U or uav∈ ∑ U  belong to the language L. The
results are organized into an observation table (), ,T = U  T
for L, where T is a mapping function defined as follows:

() () { }
() { }

 ” ”)
 ” ”

U U V yes if wis accepted
x

U U V no if wis not accepted
∪ ∑ × →=  ∪ ∑ × →

T

where ()w∈ ∪ ∑  U U  . The table 𝕋 is of dimension
() ∪ ∑ × U U 

,
 where the elements entries of both rows

and columns are {“yes”, “no”}. The values of each entry are
the outcome of a membership query for the concatenation of
the row and column strings. Let () ,u∈ ∪ ∑ U U we associate
with every u a function () { }: ” ”, ” ”row u yes no→ such that

()() ()row u v uv= T . We call such a function row of u and
the set of all rows is denoted by Rows (𝕋). Now, define by
Rowsupp (𝕋) and Rowslow (𝕋) the upper and lower parts of
𝕋, respectively. That is, () ()T { | }uppRows row u u= ∈ U and

() ()T { | }lowRows row u u= ∈ ∑ U . Rows labeled by the elements
of C are the candidates for states of the automaton being
constructed, and columns labeled by the elements of 
correspond to distinguishing experiments for these states.
Rows labeled by elements of Σ are used to construct the
transition function.

Closedness and Consistency
The table 𝕋 is closed if for all u∈U and a∈∑ , there is
' u ∈U such that () ()'row ua row u=
The table 𝕋 is consistent if for all , ' u u ∈U and a∈∑ ,

there is ' u ∈U such that () () 'row u row u= which implies that
() () ' .row ua row u a=

Figure 4: The LTEx trilateral learning framework.

Page 12 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

The primary objective of active learning is to find a rs-
RAFA of minimal size that adequately satisfies the learner’s
membership and equivalence queries. Below the algorithm 2,
is the pseudo-code outlining the learning algorithm for RAL*.

Algorithm 2 RAL* Algorithm

1: Input: ()MQ L and () ,EQ L target language: *⊆ ∑L
2: Output: RAFA
3: Prefix-closed Set: { }* ;⊆∑ = εU
4: Suffix-closed Set: { }* ;⊆∑ = ε
5: Initialize the observation table: 𝕋 () , , T = U  T for ;L
6: repeat
7: while T is not closed and not consistent do
8: (i) The learner-teacher perform ()MQ L
9: (ii)The teacher-expert perform () rr MQ− L
10: if 𝕋 is not closed then
11: find , ' , , u u v a∈ ∈ ∈∑U  such that
12: () () 'row u row u= and
13: () ()() 'row ua row u a v≠ ;
14: { } ;av→ ∪  ;
15: update(𝕋);
16: end if
17: if 𝕋 is not consistent then
18: find u∈U and a∈∑ such that
19: row(ua) ≠ row(u');
20: { } ua→ ∪U U ;
21: update(𝕋);
22: end if
23: end while
24: until Equivalence Query Succeeds
25: Comments: /* 𝕋 is both closed and consistent; */
26: Comments: /* H Construct H */;
27: Comments: /* Perform the equivalence queries with the
hypothesis H */;
28: (i) The learner-teacher perform ()();EQ L H
29: (i i)The teacher-expert perform ()();rr EQ− L H
30:
31: if the reverse equivalence query, rr EQ− L , fails then
32: the expert-teacher return a counterexample u;
33: () ;prefix u→ ∪U U
34: update(𝕋);
35: end if

If the table 𝕋 is closed and consistent the learner constructs
hypothesized RAFA H = (Σ, Q, s, F, g) where

•	 Q is the set of states, Q = {row(u) | u ∈U}
•	 q0 is the starting states, (){ }0 q row= λ
• 	 F is the set of final states, () { | }F q Q q= ∈ λ = +
•	 g is the transition function,

()() () (), ,)row u a row ua row u Q and a= ∈ ∈∑

In the RAL*, the learner eventually submits H as an
equivalence query to the teacher inquiring whether L(H) = L. It
is imperative that the observation table maintains the properties
of closeness and consistency throughout the learning process. If
at some step 𝕋 violates closeness, this is solved by adding the
string 'u into the set .∑U Similarly, if 𝕋 is inconsistent, this is
solved by adding a into the set . If an automaton fails an

equivalence query, the teacher must provide a counterexample
— a word that highlights a discrepancy between the conjectured
automaton and the target language.

Conclusion
In this paper, we have investigated a new framework called

LTEx which incorporates two theoretical metaphors known as
reversal alternation and residuality. The first is a generalization
of nondeterminism and the second is a discernment of linguistic
facts from the semantics of the state of RAFA where each state
represents a residual language. This has led to a new online active
algorithm called residual reversal-alternating (RAL*), viewed
through the lens of L*. Furthermore, we exploit the succinct
mappings between rs-RAFA, RAFA and DFA to develop RAL*.

The logic of such mappings involves a set of membership and
equivalence queries, which are referred to as MQ, EQ, r-MQ
and r-EQ, between the learner, teacher, and expert. By utilizing
the concept of residuality, we also introduced residual language
equations that precisely correspond to the states of rs-RAFA. That
is, there is a bijection between the residual language equations
of L and the states of the minimal rs-RAFA. Such models can
be naturally described as a set of residual language equations
that mirror the solutions of algebraic equations. Furthermore,
the solution of such systems of residual language equations
belongs to the class of regular languages. The results of this
paper extend the current research on learning regular languages
and have highlighted some issues for further investigation, such
as grammatical inference learning.
Conflicts of Interest

 The authors declare no conflicts of interest.

References
1.	 Denis F, Lemay A, Terlutte A. Residual finite state automata.

In: Middeldorp A, Deussen O, eds. Proceedings of the 18th
Symposium on Theoretical Aspects of Computer Science (STACS
’10). Lecture Notes in Computer Science, vol 5xx. Springer;
2010:144–157.

2.	 Denis F, Lemay A, Terlutte A. Learning regular languages using
RFSAs. Theoretical Computer Science. 2004;313(2):267–294.

3.	 Angluin D. Learning regular sets from queries and
counterexamples. Information and Computation. 1987;75(2):87–
106.

4.	 An J, Zhan B, Zhan N, Zhang M. Learning nondeterministic
real-time automata. ACM Transactions on Embedded Computing
Systems. 2021;20(5):1–26. doi:[insert DOI].

5.	 Berndt S, Liskiewicz M, Lutter M, Reischuk R. Learning
residual alternating automata. In: Proceedings of the 31st AAAI
Conference on Artificial Intelligence; 2017:1749–1755.

6.	 Fellah A. Revising and reexamining Angluin’s algorithm:
implications for unified regular language learning algorithms. In:
Proceedings of the 5th International Conference on Advances in
Signal Processing and Artificial Intelligence (ASPAI); 2023:178–
184.

7.	 Bolling B, Habermehl P, Kern C, Leucker M. Angluin-style
learning of NFA. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI); 2019:1004–1009.

8.	 Chubachi K, Hendrian D, Yoshinaka R, Shinohara A. Query
learning algorithm for residual symbolic finite automata. In:
Proceedings of the 10th International Symposium on Games,
Automata, Logics, and Formal Verification (GandALF);
2019:140–153.

9.	 Ganty P, Gutiérrez PE, Valero P. A quasiorder based perspective in
residual automata. In: Esparza J, Krail D, eds. Proceedings of the

Page 13 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

45th International Symposium on Mathematical Foundations of
Computer Science (MFCS ’20); 2020: [page numbers]. Springer.

10.	 Moerman J, Sammartino M. Residual nominal automata:
residuality and learning for nondeterministic nominal automata.
Journal of Logical and Algebraic Methods in Programming.
2022;18(1):1–28.

11.	 Tsunoo E, Kashiwagi Y, Narisetty C, Watanabe S. Residual
language model for end to end speech recognition. In: Proceedings
of the International Speech Communication Association
Conference; 2022:1–5.

12.	 Chandra AK, Kozen DC, Stockmeyer LJ. Alternation. Journal of
the ACM. 1981;28(1):114–133.

13.	 Kavitha J, Jeganathan L, Sethuraman G. Descriptional complexity
of alternating finite automata. In: Proceedings of the 8th
International Workshop on Descriptional Complexity of Formal
Systems (DCFS). 2006;44:188–198.

14.	 Antoni LD, Kincaid Z, Wang F. A symbolic decision procedure
for symbolic alternating finite automata. Electronic Notes in
Theoretical Computer Science. 2018;336:790–799.

15.	 Yu S. Regular languages. In: Salaomaa A, ed. Handbook of
Formal Languages. Vol I. Springer-Verlag; 2021:41–110.

16.	 Place T, Zeitoun M. Going higher in first order quantifier alternation
hierarchies on words. Journal of the ACM. 2019;66(2):1–33.

17.	 Barloy C, Cadilhac M, Paperman C, Zeume T. The regular
languages of first order logic with one alternation. In: Proceedings
of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’22). ACM/IEEE; 2022:1–11.

18.	 Dan S, Bastani O, Dan R. Understanding robust generalization
in learning regular languages. In: Proceedings of the 39th
International Conference on Machine Learning (ICML ’22);
2022:1–14.

19.	 Fellah A, Jurgensen H, Yu S. Constructions for alternating finite
automata. International Journal of Computational Mathematics.
1990;35(1–4):117–132.

20.	 Fellah A, Bandi A. Learning language equations and regular
languages using alternating finite automata. Journal of Computing
Sciences in Colleges. 2019;35(2):19–28.

21.	 Yu S. State complexity of regular languages. Journal of Automata,
Languages and Combinatorics. 2001;6:221–234.

22.	 Angluin D, Eisenstat S, Fisman D. Learning regular languages

via alternating automata. International Journal of Foundations of
Computer Science. 2015;25(6):781–802.

23.	 Berndt S, Liskiewicz M, Lutter M, Reischuk R. Learning residual
finite automata. In: Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI ’17); 2017:1749–1755.

24.	 Angluin D. Learning regular sets from queries and counterexamles.
Info. Comput. 1987;75(2):87–106. [Duplicate of #3—consider
removing one]

25.	 Fellah A. Real time languages, timed alternating automata, and
timed temporal logics: relationships and specifications. Procedia
Computer Science. 2015;62:47–54.

26.	 Kupferman D. Automata theory and model checking. In: Baier
C, Katoen JP, eds. Handbook of Model Checking. Springer;
2018:157–172.

27.	 Chiari M, Mandrioli D, Pontiggia P, Pradella M. A model checker
for operator precedence languages. ACM Transactions on
Programming Languages and Systems. 2023;45(3):1–32.

28.	 Vaandrager FW. Model learning. Communications of the ACM.
2017;60(2):86–95.

29.	 Moerman J, Sammartino M. Residual nominal automata. In:
Proceedings of the 31st International Conference on Concurrency
Theory (CONCUR ’20). Lecture Notes in Computer Science,
vol 171. Schloss Dagstuhl–Leibniz-Zentrum für Informatik;
2020:44:1–44:21.

30.	 Brzozowski JA, Leiss E. On equations for regular languages,
finite automata, and sequential networks. Theoretical Computer
Science. 1980;10:19–35.

31.	 Baader F, Okhotin A. On language equations with one sided
concatenation. Fundamenta Informaticae. 2013;126(1):1–34.

32.	 Fellah A. Equations and regular like expressions for AFA.
International Journal of Computational Mathematics. 1994;51(3–
4):157–172.

33.	 Arden DN. Delayed logic and finite state machines. In: Proceedings
of the 2nd Annual Symposium on Switching Circuit Theory and
Logical Design (SWCT); 1961:133–151.

34.	 Brzozowski JA. Derivatives of regular expressions. Journal of the
ACM. 1964;11(4):481–494.

