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Introduction
The concept of Residuality has been 

introduced by Denis et al [1,2] in the context 
of finite state automata. It is considered 
a natural distillation of the essence of the 
automaton’s states language recognition. 
Residuality adds foundational linguistic 
meaning to the automaton’s states in the 
context of regular languages and discerns 
significant facts from the semantics of each 
state of the automaton. In the context of 
regular languages, Residual Finite Automata 
(RFA) are a subclass of Nondeterministic 
Finite Automata (NFA) where each state 
represents a language called residual 
language of the language recognized by the 
NFA. An automaton A accepting a language 
L is residual if every state q of A represents 
a residual language. That is, if for every 
state q of A, there exists a word u such that 
the language accepted by Aq, the automaton 
A that starts in state q, is the set of all words 
v such that uv is in L. In terms of derivatives, 
an automaton accepting a language L is 
residual if the language of each state is a 
derivative of L. In addition, residuality 
plays an important role in the context of 
machine learning inference, especially in 
areas of computer science such as inference 
in finite state machines, regular languages, 

and grammars, see [3-6].
RFA are introduced as a solution to the 

well-known problem of NFA not having 
unique minimal (in terms of the number of 
states) representatives. The class of RFA 
lies between Deterministic Finite Automata 
(DFA) and nondeterministic Finite Automata 
(NFA). With their own specific properties, 
such a refined class of residual automata 
allows one to eventually observe each 
state independently and describe its formal 
semantic subsequently. Additionally, RFA 
share in common a number of significant 
properties in the context of determinism and 
nondeterminism settings. For instance, RFA 
share with NFA the existence of automata 
that are exponentially smaller, in the number 
of states, than the corresponding minimal 
DFA for the same language. Importantly, 
every DFA exhibits the property of 
residuality, which underlines several active 
learning algorithm techniques for finite state 
automata, such as the seminal algorithm L* 

of [3] for learning DFA and the generalized 
algorithm NL of [7] for learning NFA. Such 
algorithms have provoked a tremendous 
amount of research in several areas of 
computer science such as machine learning, 
artificial intelligence (AI), and software 
verification [8-11]. Broadly speaking, formal 
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languages play a significant role in shaping the perspective 
of natural language processing, machine learning algorithms, 
and data processing. Moreover, regular languages are used 
in many applications of AI from pattern matching to image 
recognition.

The notion of alternation is a natural generalization of 
nondeterminism, receiving its historical and formal treatment 
in the seminal paper by [12]. Alternation provides a succinct 
representation of regular languages, while residuality adds 
a natural meaning to the automaton’s states. This seminal 
paper and subsequent research [6,13-15] have focused 
on various types, sizes, languages, and computational 
complexities of Alternating Finite Automata (AFA). Thus, 
alternation has played an important role in understanding 
many questions in complexity theory and model checking. 
All these automata (i.e., DFA, NFA, AFA, RFA) share the 
same expressive power in terms of language recognition 
− they all accept regular languages but differ in efficiency. 
In terms of the number of states, a minimal DFA might be 
exponentially larger than an NFA and double-exponentially 
larger than an AFA. Furthermore, the presence of alternation 
can lead to simplified construction in finite automata [5,13-
21]. AFA have particularly emerged as practical tools in a 
wide variety of applications, such as the extended version 
of AFA for learning AL* [22,23], query learning for regular 
languages [3,7,22,24], and software model checking [25-27].

These two prominent metaphors, residuality and 
alternation, are considered a stepping stone towards machine 
learning algorithms. Enlightening and discerning the residual 
facts from the semantics of each state of a compacted AFA 
is a step towards a better understanding of the learnability 
of finite state machines when inferring unknown regular 
languages. Angluin’s L* algorithm for inferring an unknown 
regular language using membership and equivalence queries 
has provoked a tremendous challenge of research in various 
directions [5-7,11,23,28,29]. 

Broadly speaking, we present and extend the framework 
of L* as introduced in the original algorithm of [3]. That 
is, we extend L* by developing a model that we refer to as 
Learner-Teacher-Expert (LTEx). First, our goal is to provide 
foundational insights on finite state automata learning. Then, 
for learning regular languages, we develop a framework that 
is based on L* algorithm by exploring reversal alternation 
and residuality techniques, which subsequently infer finite 
state automata models from traces. Such a formalism is 
composed of three entities, a learner, a teacher, and an expert, 
each with a different role.

The learner, who initially knows nothing about the regular 
language L, attempts to learn L by interacting with the 
teacher. The learner repeatedly makes queries to the teacher, 
who typically works in a black-box fashion and has access to 
the language in question through the expert. The teacher can 
answer straightforward membership and equivalence queries 
by further exploiting additional information and knowledge 
from the expert. The teacher plays an intermediate role by 
refining and forwarding the learner’s residuality and reversal 
alternation queries to the expert. What is more important is 
the expert’s knowledge of the relationship between different 
classes of automata and related languages (i.e., determinism, 
nondeterminism, alternation, residual, and reversal). For 
example, the states of DFA and all versions of AFA have the 
property of residuality, which infers the existence of residual 
languages [1,2,29].

The teacher provides an interface (membership and 
equivalence queries) for the learner. In turn, the expert 
subsequently provides an interface (reversal membership 
and equivalence queries) to the teacher. In a membership 
query (MQ), the learner chooses a word w and asks the 
teacher, “Is the word w ϵ Σ*  in the language L?”, where Σ* 
is the set of all words over the alphabet Σ. In an equivalence 
query (EQ) the learner selects a hypothesis, DFA H, and the 
teacher answers whether H recognizes the language L. That 
is, whether L(H) = L. The teacher returns either “yes” if the 
equivalence query H and the inferred model are equivalent, 
otherwise, it submits a counterexample, i.e., a word in 
which L differs from the language of H. In comparison 
to the teacher, the expert answers two types of queries, 
the reversal membership query (r-MQ) and the reversal 
equivalence query, (r-EQ). The expert acts in conformance 
with the teacher’s potential requests. Our framework forms a 
trilateral interaction between the learner, teacher, and expert, 
which is summarized in four different query mappings:  (a) 
Membership Query (MQ),  (b) Reversal Membership Query 
(r-MQ),  (c) Equivalence Query (EQ), and  (d) Reversal 
Equivalence Query (r-EQ). On the other hand, L* is based 
on the classical bilateral interaction between the learner and 
teacher. 

Furthermore, we encapsulate the two-mode properties, 
residuality and alternation, into a more expressive 
automaton model that we refer to as Residual Alternating 
Finite Automata (RAFA). Then, following the analogical 
lines of L*, we reexamine L* algorithm and expend it with 
residuality and reversal alternation. That is, we introduce 
a new canonical framework that we refer to as Learner-
Teacher-Expert (LTEx), which is regulated with a variety of 
queries.  Subsequently, this canonical paradigm has led to 
an efficient residual alternating learning algorithm that we 
refer to as the Residual Reversal-Alternating (RAL*). As a 
notational convention in this paper, we denote by the letter 
“R” has a double meaning residuality and reversal. Also, we 
use the “*” by analogy to the seminal learning algorithm L*.

The remainder of the paper is organized as follows: In 
Section 2, we introduce preliminary concepts, notations, 
and definitions. Language interpretation, nullable regular 
expressions, and languages are described in Section 3. 
Section 4 formulates an algebraic language approach and 
establishes an underlying algebraic approach. Section 5 
covers alternating finite automata (AFA) with straightforward 
details, showing that AFA are a suitable framework for 
active automata learning algorithms. Furthermore, AFA are 
strengthened even more by expressing such automata in 
terms of a system of language equations and solving such 
equations in Section 6. We also introduce residual language 
equations that parallel the solution of algebraic equations. 
Section 7 puts emphasize on the related work and background 
of derivatives of regular expressions and languages. Section 
8 discusses residuality and describes such a property as a 
desirable feature in language algorithmic learning. Section 
9 extends the aforementioned results of the native AFA in 
two directions, language equations over Boolean operations 
and residual languages. In Section 10, we introduce two 
related frameworks, s-RAFA and rs-RAFA, which lay the 
groundwork for the residual-alternating learning algorithm 
and establish some fundamental results. In Section 11, we 
briefly review the classical learning algorithm L* for DFA 
by Angluin, the first of its kind that encapsulates the essence 
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of innovation. Along the analogical lines of L* which is 
augmented with residuality and reversal alternation, we 
introduce in Section 12 a new framework that we refer to 
as LTEx, equipped by residuality, reversal alternation, and 
a set of queries. We also demonstrate the importance of 
reversal alternation and residuality properties, leading to a 
new algorithm for learning regular languages called Residual 
Reversal-Alternating (RAL*). Finally, in Section 13 we 
conclude the paper with a summary and highlight looming 
future work and potential research directions.
Preliminaries

In this section, we briefly recall some relevant definitions. 
An alphabet is a finite, nonempty set. The elements of an 
alphabet are called symbols or letters. A string over an 
alphabet Σ is a finite sequence consisting of zero or more 
symbols of Σ.  Without loss of generality, we assume in the 
sequel that alphabets do not contain any of the “special” 
symbols: ( )( ), , , , *, , , ,·, ,   ,  .∅ ε ∪ ∩ ∨ ∧ + − The string consisting of 
zero letters is called the empty string, denoted by ϵ. The length 
of a string w, denoted by |w|. is the number of symbols in 
w. By definition, |ϵ| = 0. The set of all strings (respectively, 
all nonempty strings) over an alphabet Σ is denoted by 
Σ* (respectively, Σ+). A language is said to be nullable if 
it contains the empty string, ϵ, that is, a language L is 
nullable if ϵ ∈ L. A language L over Σ is a (possibly infinite) 
set of finite strings  L ⊆ Σ*. We denote the language of 
an automaton A by L(A) and the language accepted by 
a state   q Q∈ by Lq Regular languages are a special class 
of languages used in many applications, ranging from 
compilers and recent modern languages to web services. 
Given a language L over an alphabet Σ, the Kleene star 
closure (“∗”) of L is the set *

0 i
iU ∞

=
=L L and the positive Kleene 

plus (“+”) of L is the set 
1 i

iU ∞+
=

=L L . The language *  \= ∑L L  is 
the complement of L. The concatenation of two strings u and 
v is the string consisting of the symbols of u followed by the 
symbols of v, denoted u.v. (also often written as uv ). We use 
the symbol “·” to show the concatenation operation, which 
we sometimes omit in this work. We denote the reversal of 
a string w by wr, while the reversal of a language L. denoted 
Lr, is defined as Lr = { wr |wϵL}. A prefix-closed set is a set 
where every prefix of every member is also a member of the 
set. For example: {aba, ab, a, baa, b}.  A suffix-closed set is a 
set where every suffix of every member is also a member 
of the set. For example: {abb, bb, b, baa, aa, a}. Finite state 
automata, typically deterministic and nondeterministic 
versions, are the two fundamental representations of regular 
languages. In this paper, we equivalently refer to finite state 
automata as finite automata. 

A nondeterministic finite state automaton (NFA) is a 
quintuple A = (Σ, Q, Q0, δ, F) where Σ is the alphabet, Q is 
a finite set of states, Q0 is a set of initial states Q0 ⊆ Q, δ: 
Q x Σ→ 2Q  is the transition function, and F ⊆ Q is a set of 
final states.  A is called deterministic finite-state automaton 
(DFA) if |Q0| = 1 and δ: Q x Σ→ Q. The transition function δ 
can always be extended to δ: Q x Σ*→ 2Q defined as δ (q, ϵ) = 
{q} and δ (q, wa) =  δ(δ(q,w),a) for q ∈ Q, a ∈ Σ and w ∈ Σ*. 
The language accepted by A is

 ( ) ( )0{ * | , }w Q w F= ∈∑ δ ∩ ≠ ∅L A

Semantic Interpretation and Emptiness Analysis of 
Regular Languages and Expressions

Regular expressions are formal notations for describing 
regular languages. Let e denote a regular expression, we 

define the regular language of e to be L(e). Furthermore, 
we define the set of regular expressions by E over Σ as the 
subset of (Σ ∪ {ϵ,∅,+,·,*,-,( ,)})* that recursively satisfies 
the following conditions:

( ) { }
( )

( ) ( ) ( ) ( )
( ) ( )

1 2

*
1 2 1 2

1 2

    ,    

  If e  ,     then  

                  ,  ·  ,  

                   ,    

i E

ii e E

a e e e e e E

b e e e E

∑ ∪ ε ∅ ⊆

∈

+ ∈

∩ ∈

In addition to the above operation of union, concatenation, 
and star as defined in (a), regular expressions which include 
the intersection (∩) and complement (-) operations as shown 
in (b) are called extended regular expressions.

Definition 1: The language interpretation ι of an extended 
regular expression e is defined recursively as follows:

. 

1 2 1 2

1 2 1 2

1 2 1 2
* *

1 1

1 1

{ }
{ }
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( )

( )

e
e

a e a a
e e e e e

e e e e e e
e e e e e
e e e

e e e

∅ =∅
 ε
 = ∈Σ
ι + ι = +ι = ι ⋅ ι = ⋅
ι ∩ ι = ∩

ι =
ι =

if 
if  is nullable
if  and 
if 
if 
if 
if 

if 

where e, e1 and e2 ∈ E.
        
We say that an extended regular expression e is nullable 

if the language it represents contains the empty string, 
that is if ϵ ∈ L (e). Furthermore, a language L is said 
to be nullable if ϵ ∈ L. Formally, the following is a direct 
consequence of the nullable definition of L.  Thus, we 
define the nullable interpretation η of extended regular 
expressions e, e1, and e2 as follows:

We can also apply η to E.

( ) { } ( )        
       

if L e
e

otherwise
 ε ε∈

η = 
∅

( )
( ) { }

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( )( )

1 2 1 2

1 2 1 2

1 2 1 2

*

 

 e e e e

e e e e

e e e e

e

η ∅ =∅

η ε = ε

η + = η +η

η = η η

η ∩ = η ∩η

η = ε

 

L L

L L

L L
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{ } ( )
( )

( )
e

e
e

ε ∅∈
η = ∅ ε∈

if 
if 

L
L

An Algebraic Approach Language to Language 
Theory

Let define by the symbol B the Boolean semiring, B = {0, 1}. 
Let Q be a set. Then BQ is the set of all mappings of Q into B. 
Note that   Qu B∈ can also be considered as a Q-vector over B. 
Let B(X) be the set of Boolean expressions over X with the usual 
operation symbols, that is, with ,  , , ∨ ∧ − including the constants 
0 and 1. We now introduce two additional operation symbols 
“+” and “.” to form an algebra a T (X, Σ) of terms over X and Σ 
with the following properties: 

(T1)	 T (X, Σ) contains the two “special” elements denoted 
by ∅ and ϵ.

(T2)	 For every w ∈ Σ+ and every ( )  ˆ  ˆ,  e X w e∈ ⋅B
 
is a term in 

T (X, Σ).
(T3)	 For every t1, t2 ∈ T (X, Σ) also t1 + t2 is a term in 

T(X, Σ).
(T4)	 For every w ∈ Σ* and every t ∈ T (X, Σ), w·t  also a term 

in T (X, Σ). 

These operation symbols satisfy the following 
conditions:

(T5)	 With respect to +,T (X, Σ) is a commutative band with 
∅ as an identity element.

	 With respect to ·,T (X, Σ) is a commutative band with ϵ as 
an identity element

(T6)	 For any *
1 2,  w w ∈Σ  and any ( )e X∈ B  one has 

1 2 1 2· · ( · .( )( ) )w w e w w e= 

 Moreover, 1·  w ∅ = ∅ and 1 1· .w wε =

(T7)	 One  ( ) ( ) ( )1 2 1 2 ·  ·  ·  · w e e w e w e= +
 
has and   ( )1 2 1 2· . .w t t w t w t+ = +

for all w∈∑ all    ( )1 2,  , e e X∈B and all 1 2,   t t ∈ T (X, Σ).

The terms in T (X, Σ) have a simple normal form as shown in 
the following result:

Lemma 1 Every term t in T (X, Σ) can be effectively transformed 
into the form:

1

n

i
i

t
=
∑

for some n ∈ N such that every ti is a term of one of the forms
,    · ,    ,    ˆ ·i i i i i i it t w t or t w e= ε = ε = ∅ = .

With wi ∈ Σ* and ( )ˆ ;ie X∈B  in addition, one may assume 
that each îe  is a Boolean constant or a conjunction of variables 
or their negations. Moreover, the terms ti are distinct and, if ti = 
∅ for some i,  then i = n = 1. 

Proof: By the construction of T (X, Σ), every term has the 
form Σti where every ti is of one of the above forms. Assume 
that ·ˆi i it w e= with îe not a constant or a conjunction of 
variables or their negations. Then îe can be re-written as a 
disjunction of conjunctions of variables and their negations. 
The application of the property (T7) then yields the required 

form. By (T5), no term occurs twice, and ∅ can be omitted as 
a term unless it is the only one.

Thus, we have constructed a sorted algebra as 
follows:
( ) ( )( )*,  ,   , , · ,  ,  ,  ,  ,  ,     ,1 ,  0       X X∑ ∑ + ε ∅ ∧ ∨T B

which we also denote by T (X, Σ). The underlying sets of this 
algebra are T (X, Σ), Σ*, and B(X). In this algebra one has the 
binary operations

( )( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

*· :     , ,  

: ,  ,  ,  

 :    

:    

T X X X

X X X

X X X

X X X

∑ × ∑ ∪ → ∑

+ ∑ × ∑ → ∑

∧ × →

∨ × →

B T

 T T T

B B B

B B B

The unary operation: ( ) ( ):  X X→B B

and the nullary operations:
( ) ( ), ,    and 0,1      X Xε ∅ ∈ ∑ ∈ T B

We now introduce language interpretations ιλ of elements 
of this algebra. Again, we use the symbol ι because we are 
extending the interpretation of regular expressions. Let 
λ be a homomorphism of the algebra ( )( , , ,  ,1 ,  0)X ∧ ∨ −B into 
the algebra *( ) *(2 , , ,    ,  ,  )∑ ∩ ∪ ∑ ∅  where the symbol “⎼” denotes 
complement with respect to Σ*. The interpretation ιλ is a 
homomorphism of the algebra T (X,Σ) with the operations
·,  ,  ,  ,  ,  ,    ,1 ,  0 + ε ∅ ∧ ∨
into the set *

2∑  with the operations
{ } *·,  ,  ,  ,  ,  ,     ,  ,  ∪ ∅ ∩ ∪ Σε ∅

which satisfies the following:
( ) { } { } ·        ˆ ˆw e w eλι = λ

for all w ∈ Σ* and all ( )ˆ .e X∈B Note that any mapping 
 :    2X ∑λ →  can be uniquely extended to a homomorphism 

of B(X) into *

2 ,∑  and hence, gives rise to a unique language 
interpretation, again denoted by ιλ.

Alternating Finite Automata (AFA)
Alternating finite automata (AFA) exhibits the property 

of alternation in the following sense: If in a given state 
q,  the automaton reads an input symbol a, it activates all 
states of the automaton to work on the remaining part of 
the input in parallel. Once the states have completed their 
tasks, q evaluates their results using a Boolean function 
and passes on the resulting value by which it was activated. 
A string w is accepted by an AFA if there exists some path 
that leads to an accepting state. More precisely, a string w 
is accepted if the starting state computes the values of 1. 
Otherwise, it is rejected. In a nondeterministic computation, 
all configurations are existantial in the sense that there 
exists at least one successful path that leads to acceptance. 
An AFA may also have universal configurations from which 
the computation branches into a number of parallel 
computations that must all lead to acceptance. We represent 
existential and universal choices by a Boolean formula. 
Formally, let Q be a finite set of states, we use BQ to be the 
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set of all Boolean formulas over Q. That is, BQ is built from the 
elements q ∈ Q, 1 and 0 using the binary operations or  ( ) ,∨

and ( ),∧ and not (⎼).We now formalize this idea.

Definition 2 An alternating finite automaton (AFA) is a 
quintuple A = (Σ, Q, s, F, g) where (a) Σ is an alphabet, the 
input alphabet; (b) Q is a finite set, the set of states; (c) s ∈ Q 
is the starting state; (d) F ⊆ Q is the set of final states; (e) g is 
a mapping of Q into the set of all mappings of  Σ x BQ into B.

Now, we turn to defining the sequential behavior of an 
AFA. For q ∈ Q and a ∈ Σ, let gq(a) be the Boolean function 
defined as:

( )  ˆ  :   , Q
qg a u ∑× →B  B

where a ∈ Σ and û ∈ BQ. Also, for a ∈ Σ, q ∈ Q and 
 
û ∈ BQ, gq(a, 

û), = gq(a) (û)  is equal to either 0 or 1. Later, we also need the 
mappings g (a) of Q into the set of all mappings of BQ into B 
and the mappings gp (a) of BQ into B defined by

( )( )( ) ( )( ) ( )ˆ ˆ,ˆ p pg a q u g a u g a u= =

 for a ∈ Σ, q ∈ Q, and û ∈ BQ

 Now define f ∈ BQ by the condition

 
1  qf q F= ⇔ ∈

f is called the characteristic vector of F. We extend g to a 
mapping of Q into the set of all mappings of Σ* x BQ into B as 
follows:

( )
( ) *

                                
,  

( , ,            

 

ˆ
  , ˆ

q
q

q

u if w
g w u

g a g v u if w av with a v

=ε= 
= ∈∑ ∈∑

where w ∈ Σ* and û ∈ BQ.

Definition 3 Let A = (Q, Σ, s, F, g ) be an AFA. A string w 
∈ Σ* is accepted by A if and only if gs(w, f)=1. The language 
accepted by A is the set

 ( ) ( ) {  |  * , 1}.SA w w g w f= ∈∑ ∧ =L

We denote the language of A by L(A) and the language 
accepted by a state q ∈ Q by Lq.Note that in the same spirit 
as the characteristic vector of F, we extend g to languages.
Thus, we define the characteristic output of ˆ, ( , ),g w uAA as 
follows:

Definition 4 Let be A = (Σ, Q, s, F, g ) an AFA and  L(A) the 
language accepted by A. Then, the characteristic output of  
Ais defined as:

( ) ( ) ( )1                ,  1    
,  

0              

ˆ

 
ˆ qif g w u for all w L A

g w u
otherwise

= ∈= 


A

Example 1 Consider the following AFA A = (Q, Σ, s, F, g) 
where Q = {q0, q1, q2}, Σ {a, b}, s = {q0},  F = {q2}, and g is given 
by the following Table 1.

The existential and universal states as represented as 
  ,and∨ ∧ respectively. The AFA can have multiple runs on a 

given input where both choices coexist. Notice that the run 
branches in parallel to the two states q0 and q2 on the second 
input symbol b from q1 as shown in Table 1 and graphically 
in Figure 1. In addition, there are three separate mappings 
of BQ into B. That is, g(q0), g(q1), and g(q2) represent  Boolean 

value of true 1 or false 0 as shown in Table 2.

Example 2 Let w = bab be a string. We will check whether 
the input w is accepted by the above AFA A.

( )
( ) ( )

( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( )

0

1 2

0 0 1

1 2 1 2 0 2

,  

 ,    ,  

 g ,    g ,    g ,  

 ,    ,    ,    ,    ,    ,  

 0  1   0  1   0  1

 0  0   0  0   1  1

 (0)  0  (1)

 0  0 

q

q q

q q q

q q q q q q

g bab f

g ab f g ab f

b f b f b f

g f g f g f g f g f g f

= ∨

= ∨ ∨

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨ ∨ ∨ ∧

= ∨ ∨

= ∨ ∨

 
 
 

  
 

     

( ) 0

 0  (0)
 0  1
 1

= ∨
= ∨
=

By Definition 3, the characteristic output of the 
computation is equal to 1 and the string bab is accepted by 
the AFA  A.

We now introduce the notion of reversal AFA (r-AFA) 
which can be seen as an AFA except that it reads its input 
in reverse order. Moreover, such automata are usually used 
for implementing regular languages and their operations 
efficiently, as summarized in the next theorem. We will adapt 
and extend r-AFA far beyond their original scope [6, 19, 21]. 
That is, we will exploit such results in the context of learning 

States a b

q0 q0 ˄ q1
1 2q q∨

q1 q0
0 2q q∧

q2
0 1  q q 1

Table 1. AFA’s state table

states  g (q0)  g (q1)  g (q2)
q0 q1 q2 a b a b a b

0 0 0 0 ① 0 0 ① ①
0 0 1 0 0 0 ① ① ①
0 1 0 0 ① 0 0 0 ①
0 1 1 0 ① 0 ① 0 ①
1 0 0 0 ① ① 0 ① ①
1 0 1 0 0 ① 0 ① ①
1 1 0 ① ① ① 0 ① ①
1 1 1 ① ① ① 0 ① ①

Table 2: g (q0), g (q1), and g (q2)



Page 6 of 13

Aziz Fellah. Japan Journal of Research. 2025;6(10):156.

Japan J Res. 2025; Vol 6 Issue 10

algorithms of regular languages and automata inference as 
in Sections 10 and 12.

Theorem 1 (DFA, r-AFA) ([6, 21]).

If L is accepted by an n-state complete DFA then L is 
accepted by an r-AFA with at most [log2n] states.

System of Language Equations: An Interpretation of 
AFA

Language equations are equations defined over languages 
where both the constants and variables are formal languages. 
Usually, they are formalized through various classes of finite 
state automata such as deterministic, nondeterministic, 
and universal finite automata. It is well-known that regular 
languages can be described as the solutions of systems of one- 
sided linear equations in an appropriate semiring [25, 30, 31]. 
These systems of equations can be easily generated by DFA 
or one-sided linear grammars.  In this section we follow a 
“similar” idea and show that AFA can be readily represented 
by systems of equations. However, the systems of equations to 
be considered involve Boolean expressions over a finite set X 
of variables and the symbols of an alphabet B. The main result 
of this section is that the solutions of such systems of equations 
are precisely the regular languages and that, indeed, there is 
a natural correspondence between AFA and such systems of 
equations. In the sequel, we associate with each AFA a system 
of equations such that the languages accepted by the AFA with 
various start states constitute the unique fixpoint of the system 
of equations. Let  A = (B, Q, q, F, g) be an AFA. For q ∈ Q, we 
use xq to denote a Boolean variable associated with the state q 
and xq to denote its negation. Let Xq = {xq | q ∈ Q}. Then the 
following system ) of equations can be used to describe A:

          ( ) ( ) ( )
  

 ,     ˆq q q q
a q Q

X a g a X f
εΣ ε

 
= = + ε 
 

∑ 

L A                    ( 1 )            

 where X is the vector of variables ( ),   , ,  q px q Q g a Xε   is  
being given by a Boolean expression in B ( X q ) , and

( )      1  
    

q
q

if f
f

otherwise
ε =

ε = ∅

The solution of this canonical representation of ( )L A
, which can always be constructed via several systems of 
language equations, exists and uniquely defined [21,32].

The Uniqueness Solution of Language Equations
Deterministic, nondeterministic, and universal finite automata 

can be represented by system of language equations with two 
operations, union and concatenation. The relevant properties 
of these equations, such that existence and uniqueness of their 
solutions have been established in the literature [21, 32].

Theorem 2 Let x= e1x + e2 be an equation in the x, where e1 
and e2 are regular expression.
Then *

1 2x e e=  is the solution of the equation. Furthermore, this 
solution is regular if e1 and e2 are regular.

Proof: If *
1 2x e e= is the solution, then we have to show that 

* *
1 2 1 1 2 2                   2)(e e e e e e= +                               (2)

The problem of deciding whether two regular expressions are 
equivalent is reduced of deciding whether the two language 
interpretations denoted by the two sides of the equation 
(2) are the same. That is, ( )* *

1 2 1 1 2 2 ).(e e e e e eι = ι + Assume that 
*
1 2 ,w e e∈  then w can be written as w = w1w2, where *

1 1w e∈ and   
w2 ∈ e2. If w1 ≠  ϵ then *

1 1 1w e e∈ where * *
1 1 1 1 2ee e e e⊂ + . If w1 = ϵ then 

2 2 ,w w e= ∈  where *
2 1 1 2e e e e⊂ + . Thus, the left-side hand of the 

equation (2) is a subset of the right-side hand.   
Conversely, assume that *

1 1 2 2.w e e e e= +  If *
1 1 2 ,w e e e= then 

*
1 2 ,w e e=  and if w ∈ e2, then w is also in *

1 2.e e Therefore, in (2) 
the right-side hand is a subset of the left-side hand. Thus, we 
have proved the theorem.	
The following theorem gives a sufficient condition for the 
uniqueness of the solution of Theorem 3.

Theorem 3 Let 1 2x e x e= + be an equation, and *
1 2x e e= be its 

solution. Let 1)(eι be the language interpretation of e1. If ϵ ∉ι(e1), 
then the solution *

1 2x e e= is unique.

Proof:  ϵ ∉ ι(e1) is a sufficient condition for the uniqueness 
of the solution *

1 2x e e= . Assume that there exist two solutions x1 
and x2 such that 1 2x x≠ which satisfy equation 1 2.x e x e= + Then, 
we have

1 1 1 2

2 1 2 2

                                             (3)
                                            (4)

x e x e
x e x e
= +
= +

Since 1 2x x≠ , then ( ) ( )1 2  .x xι ≠ ι Therefore, there exists a word 
w such that 1 2 )(      anw x d x∈ ∉ or 1 2 .(      )nw x wa xd∉ ∈  Without loss 
of generality, assume that w ∈ x1 and w ∈ x2; let w be such word 
of the shortest length (w need not to be unique). If there exists w’ 
∈ x1 such that ,w w′ 〈 then w’ ∈ x2 . Since w ∈ x1, then from (3), w 
∈ e1x1 or w ∈ e2. But w shouldn’t belong to e2, because, by (4)  w 
would belong to x2. Thus, w can be written as w = w1w2, where 
w1 ∈ e1 and w2 ∈ x1. Since ϵ ∉ e1, then the word w1≠ ϵ, therefore 
the length of w2 is strictly less than the length of w, in addition, 
we also know that w2 ∈ x2 since 2 .w w〈  This implies that w1 w2, 
and consequently w belongs to e1x2. Thus, w1, w2, and w belong 
to x2 by (4). This is a contradiction with our hypothesis and the 
choice of  w.

Corollary 1 Let X be the set of Boolean variables, and ( )1eι
and ( ) *

2   eι ⊆∑  are language interpretations generated by e1 
and e2, respectively. The language equation h as a solution

( ) ( )1 2  X e X e= ι + ι . Furthermore, the solution is unique if ϵ 
∉ ι(e1).

Figure 1: An alternating finite automaton (AFA).
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Theorem 4
( )

( )
( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

1 2 1 2

* *
1 1 1

1 2 1 2

1 1

(
  

 
 

     

     

 

    

 

)
a

a

a

a

a a a

a a

a a a

a a

a

b if b a

e e e e

e e e

e e e e

e e

∂ φ =∅

∂ =∅

∂ =

∂ =∅ ≠

∂ + =∂ +∂

∂ =∂

∂ ∩ =∂ ∩∂

ε

∂

ε

∂ =

( ) ( ) ( )
( )

a 1 2 a 2 2
a 1 2

a 1 2

          
 

                                  
e e e if e is nullable

e e
e e otherwise

∂ +∂∂ = ∂


The last equation takes the symbol a off of the first expression 
e1 or from the second regular expression e2 if L(e1) is nullable 
(i.e., the empty string ϵ∈ L(e1).

Example 4 Let Σ = {a, b}.
•	 Let e = a ( a b ) * . Then the derivatives of e  with respect 

to a  and b  respectively are ( ) ( ) ( )*      .a be ab and e∂ = ∂ =φ
•	 Let e = a ( a b + a ) * b a . Then the derivative of e with 

respect to a using auxiliary properties and calculations 
is:      

( ) ( )( )
( )( ) ( )

( )( )( ) ( )
( ) ( )( )( ) ( )

( )( ) ( )
( )( )

*

*

*

*

*

*

    

                

                  

                

                   

                  

          

a a

a a

a a

a a a

a

e ab a ba

ab a ba ba

ab a ab b ba b a

ab a ab a ba b a

b ab a ba b a

b ab a ba

b

∂ = ∂ +

= ∂ + +∂

= ∂ + + +∂

= ∂ +∂ + +∂

= +ε + +∂

= +ε + +φ

=( )( )*    . ab a ba+ε +

In a similar manner, we can compute the derivative of 
e with respect to b, that is, ( ).b e  In addition, the concept 
of derivatives applies to languages. For a language L, 
the derivative of L with respect to a string w is the set of 
remaining strings after having read w from any string in L, 
formally defined as follows:

Definition 6 The derivative of a language L *L ⊆ ∑  with respect 
to a string *  w∈∑ is defined by ( ) *{      | }.w v wv∂ = ∈ ∑ ∈L    L

The following two properties are a consequence from the 
definition of the derivative.

( )
( ) ( )( )

   

  ua a u

∂ =

∂ =∂ ∂

L L

L L
ò

where *  w∈∑ and   .∈∑

Proposition 1 Let *  ,   ,a w∈∑ ∈∑ and  .e E∈  Then ( )    aw e∈ L if 
( )( ) aw e∈ ∂L and ϵ∈ L(e1). if and only if  nullable ( e ) .

Learning Regular Languages Through Residuality
In this section, we show that residualizing canonical AFA 

through a generalized reversal alternation methodology leads 
to the construction of DFA that recognizes regular languages. 
Residuality is considered a natural distillation of the essence 

The above Corollary is an extension of Arden’s rule [33] and 
Theorem 3 to language equations.

Example 3 Given the NFA A = (Q, Σ, Q0, F, 𝛿), where 
Q = {x1, x2, x3}, Σ = {a, b}, Q0 = x1, F = {x3} and   is given 
by the following system of language equations. The regular 
language L(A) generated by A is obtained by solving the 
following system of language equations. Let  A be an NFA 
as depicted below.

Figure 2: ( ) ( ) ( )*x a a ab b= = + Σ +L A L

Lx1 = aLx1 − aLx2 + bLx3
Lx2 = ΣLx1 + bLx3
Lx3 = ϵ

Using backward propagation yields the solution Lx1 which 
is obtained by using a series of substitutions of Theorem 3 
and Corollary 1 as follows:

( )

1 1 2

2 1

1 1 1

1 1 1

1 1

1

( )
( )*( )

x x x

x x

x x x

x x x

x x

x

a a b
b

a a b b
a a ab b
a a ab b
a a ab b

= + +
= ∑ +

= + ∑ + +

= + ∑ + +
= + ∑ + +
= + ∑ +

L L L
L L

L L L

L L L
L L
L

Derivatives of Regular Expressions and Regular 
Languages
The notion of derivative regular expressions has been 
introduced by Brzozowski [34] for finding the quotient of 
regular expressions and providing corresponding derivatives 
and their auxiliary functions. Let e be an extended regular 
expression, and u is a string over Σ*. We denote by ( )u e∂ the 
derivative of e  with respect to u, which is formally defined 
as follows:

Definition 5 The derivative of an extended regular 
expression e with respect to a string *  u∈∑  is defined to as: 

( ) *  | u e v uv e∂ = ∈∑ ∈  and ( ) *  {    |   }u v wv∂ = ∈∑ ∈L L .

Intuitively, ( )u e∂  is the set of all remaining strings obtainable 
from e by taking off the prefix u, if possible. The derivatives 
of an extended regular expression e with respect to a symbol 

  a∈∑ are defined as follows:

a
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of the automaton’s states language recognition. Importantly, 
it adds a foundational meaning for a better understanding 
of regular language learning algorithms and computational 
learning theory. Residual finite state automata (RFA) [1] are a 
subclass of NFA where each state represents a residual language 
of the language that is accepted by the automaton. The class of 
RFA lies between DFA and NFA, and they share in common a 
number of significant properties. For instance, RFA share with 
NFA the existence of automata that are exponentially smaller, in 
terms of the number of states, than the corresponding minimal 
DFA for the same language. For more details, see Introduction, 
Section 1.

Definition 7 A residual finite automaton (RFA) R = (Σ, Q, s, F, 
δ) is a nondeterministic finite automaton (NFA) where for every 
state q ∈ Q, L(Rq) is a residual language ∈ L(R).

The class of RFA lies between DFA and NFA, and they share 
in common a number of significant properties. For instance, RFA 
share with NFA the existence of automata that are exponentially 
smaller, in terms of the number of states, than the corresponding 
minimal DFA for the same language. These properties make 
RFA particularly appealing in severalareas of computer science 
such as pattern recognition, computational biology, and software 
verification. Moreover, residual languages play an important 
role in many state machine inference algorithms, particularly 
in identifying residual languages and actively learning regular 
languages from queries and counterexamples.

Let A = (Q, Σ, q, F, δ) be a finite state automaton. The language 
L(A) is the set of all accepted strings by A. For a state q ∈ Q, 
we write Aq for the automaton that starts in the configuration 
(i.e., state) q.

Definition 8 A language *  q∈∑L  is a residual language of L if 
there is *  w∈∑  such that ( )  ,q w=∂L L where ( ) *  {    |   }.w v wv∂ = ∈∑ ∈L L

For notational purpose, we use Lq to indicate the residual 

 ( ) ( ) ( ) ( ) ( )
0 1 2 4   ,  ,  ,     .,  q a q q qRes α β∂ε = ∂ = ∂ = ∂ =L L L L L L L L L

where αand  *  ,   a b+β∈∑ α=  and β
An automaton A accepting a language L is residual if every 

state q of A corresponds to a residual language (equivalent 
to residual in this paper). However, the reverse is not always 
true. That is, not every residual language should be accepted 
by a unique state. To this end, several states may accept the 
same residual language. Consequently, we categorize the 
set of residual languages as prime and composed residual 
languages, formally defined as follows:

Definition 9 A residual language L' with respect to a 
string *  w∈∑ is called prime ( ) ( ) ( ) ( ){   |   }  .v v w w∂ ∂ ∂ ∂ L L L L
Otherwise, L' is called composed. In other words L'  is a 
residual prime if there are ( )1 2 \, ... { '}n Res∈L L L L L such that 

1 2'      . . .   n≠ ∪ ∪ ∪L L L L .

Definition 10 A residual alternating finite automata (RAFA) 
( ).  , ,ˆ  , , Q s F g= ∑  is an alternating finite automaton (AFA) such 

that for every state ( )  ,   qq Q∈ L A  is a residual  language  ( )ˆ∈L A .

Similar to AFA and better suited than RFA, RAFA (Residual 
Alternating Finite Automata) are double-exponentially more 
succinct than DFA, making them the preferable automaton 
model to work with in practical learning algorithms. We will 
show in the remaining of the paper that RAFA is double 
exponentially than the size of the corresponding minimal 
DFA but are usually even considerably smaller and easier 
to learn.

Given a RAFA ( ).  , ,ˆ  , , Q s F g= ∑A recognizing the set of 
regular languages, ( ) ,Res L  a state   q Q∈  is called prime if 
it recognizes a prime residual language of L. That is, ( )∈L A
Prime (L). A residual is called composed, if it is the non-trivial 
union of other residuals. Otherwise, it is called prime residual 
language.

Lemma 2 Let ( ) ˆ , , ,  , Q s F g= ΣA  be a RAFA. For every prime 
residual language ( )' ( ,ˆ

w∂L L A  there exists a state   q Q∈ such that 
( ) ( ).ˆ(q w= ∂L A L A

Residual Language Equations
In this section, we extend the aforementioned results of the 
native AFA in two directions: First, we consider language 
equations over Boolean operations and show the existence 
of solutions. Second, of special interest are the semantics 
of residual alternating finite automata in terms of residual 
languages over finite words. Let ( ) ˆ , , ,  , Q s F g= ∑A be a residual 
alternating finite automaton (RAFA) and let ( )0  , . . . , .qX X X=  
We use qX  to denote a Boolean variable associated with the 
state q and qx to denote its negation. Let   {  |   }q qX x q Q= ∈ . Then 
the following collection of language equations, ( ) ,qL A identify 
the set of residual languages of L.

( ) ( ) ( )
  

 ,            ˆq q q q
a q Q

X a g a X f
εΣ ε

 
= = + ε 
 

∑ 

L A                 (5)

a

language of state q. Let ( )0 , , , , Q Q F= Σ δA be a DFA. 
Q = {q0, q1, q2, q3, q4}, { } { }0 0, ,  ,  a b Q qΣ = =  { }2 3, F q q= and δ 

as shown in the following graph in Figure 3.
Now, we derive a simple set of residual languages of L, 
denoted by

Figure 3: ( ) ( ) ( )
0

        q q a b a b b b
++ + + += = + ε+ ∑ + ∑L A L
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( ) ( ) 1

ˆ
       

 
    

q
q

if f
f

otherwise

ε == 
∅


                       

where ( )ˆ , qg a X  is the set-operation interpretation of the 
Boolean function ( ), ,   ,g a X q Q∈ and   .a∈∑

Similarly to L(A) the language ( )ˆL A  is the set of all accepted 
strings by A. For a state   ,q Q∈ , we write Aq for the automaton 

( ) ,  , , , Q q F g= ∑A that starts in the configuration q instead of s. 
Let L and *,  w∈∑ we denote by the derivative of  L with respect 
to w. * L′∈∑ is a residual language of L if there is *  w∈∑  such 
that ( )'  .w=∂L L Then the following theorem describes the 
system of residual language equations:

Theorem 5 Let ( )   , , , , ˆ Q s F g= ∑A  be a residual alternating finite 
automaton (RAFA), )(Res L the set of residual languages of ,



A
and { }q q Q

X
∈

 be the solution of the language equations. Then the 
following claims hold:

( ) ( )
( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

s

q q

q w w q

w w w s

  

  

   

      

ˆ

 

ˆ

ˆ

i X

ii X

iii X

iv Res X

=

=

= ∂ = ∂

= ∂ = ∂ = ∂

L A

L A

L A L A

L L L A

Proof: (i) Let  ( )q  , , , , ,Q s F g= ΣA    q Q∈ We prove that ( )q qX=L A

for all   q Q∈ . Since s  ,ˆ =A A  ( )s .   sX=L A We prove this for any *,  w∈∑  
if and only if gq (ϵ, f) = 1  by induction on the length of w. If 

  0.w =  i.e., w = ϵ, then ϵ ∈ Xq if and only if gq (ϵ, f) = 1 because 
gq (ϵ, f) = fq and by definition ( )  fqε = ε  if and only if  1 .qf =  

Assume that any *  w∈∑ such that   ,   qw k w X< ∈ if and only if 
gq (ϵ, f) = 1 Consider *  w∈∑ such that  ,w k<  where k > 0. Let  

0 . w aw=   ( ),  1 qg w f =  if and only if ( ),  1 qg a u =  and ( )0  , .u g w f=
By induction hypothesis,  1 pu =  if and only if 0   qw X∈  for all p ∈ 
Q.  Therefore, gq (w, f) = 1 if and only if w0 ∈ gq(a,u) and if and 
only if   .qw X∈
      The proof of each of the above claims, (ii), (iii), and (iv) 
follow in turn the same induction pattern than that of (i).
That is, on the length of the string w and in terms of the 

derivative of a language. That is, the set ( )( )w q∂ L A which is the 
set of stings in L with the prefix w. The last claim asserts a set 
of characteristic equations where Xs is exactly the language 
accepted by Â�.
      The most significant property of residual automata (RFA) 
is that it performs the semantics of each state independently, 
which makes RFA appealing in several areas of research 
in computer science. In the grammatical inference and 
finite state automata settings, residuality underlies the 
seminal algorithm L* for learning deterministic automata 
[3] and building other efficient algorithms for learning 
nondeterministic and alternating automata, NL and  AL*.
Now, we illustrate and compile the system of residual 
language equations for the AFA from Table 1 and Figure 
1.

( ) ( )0 1 1        q q q q qa b= ∧ + ∨L L L L L

( )
0  21 0    q q qqa b= + ∧L L L L

( )
12 0        1  q q qa b= ∨ + +εL L L

Reversal-Alternating State Machine Framework for 
Learning Residual Languages

Learning regular sets from queries and counterexamples by 
[3] forms the basis of many modern state machine inference 
algorithms. With respect to the minimization of RAFA, we 
consider a special kind of RAFA that we call s-RAFA. An 
s-RAFA is an RAFA  ( ) , , , , Q s F g= ΣA such as every a   a∈∑  and 
every ˆ ,   Qu B∈ , ( )ˆ, ,qg a u  does not depend on bus. Intuitively, 
this means that the starting states cannot be reached in any 
computation. Obviously, for every RAFA one construct an 
equivalent s-RAFA which has just one more state. On the 
other hand, if Â  is ( )  1 a k +  state s-RAFA then there exists an 
equivalent k-state RAFA. For example, the language { }2, , a aε  is 
accepted by a 3-state s-RAFA but not by any 2-state RAFA. The 
s-RAFA are particularly useful to simplify certain constructions 
of regular language learning algorithms.

Theorem 6 Let L be a language andLr  be the reverse of L. 
L is accepted by an s-RAFA with k + 1 states if and only if 
Lr is accepted by a DFA with 2k states.

Proof: We show the proof by construction. Let ( ), , , , .Q s F= Σ δ     
be a 2k-state DFA. Let   {1, 2, . . . , K k=  and { }0     0 .K K= ∪  Without 
loss of generality, we assume that   KQ = B   and { }  0, . . . , 0 .s =  
For 0 ,  ˆ Ku∈B  let '  Ku ∈B   be defined by '  ˆu u=   for all   .i K∈  Now, we 
define a  (k + 1)-state s-RAFA ( )ˆ ˆ ˆ ˆ   , , , , Q s F g= Σ

A A A
A  by

0ˆQ K=
A

ˆ 0s =
A

{ } ˆ
ˆ

0    if     
 

0     otherwise 

s F
F

 ∈=


 A
A

( ) ( )' '

'

,         if    0 and  

1                      if    0a

ˆ ˆ

ˆ nd  
i

u a i u F
f x

i u F

 δ = ∈= 
= ∉





For 0 , i K∈    a∈∑  and 0ˆ  Ku∈B . The function g is well defined 
since Â  is an alternating residual finite automaton. By 
induction on the length of *  , w∈∑ one shows that ( )ˆ  , u g w f=  
if and only if ( )  ,   'rs w uδ = 

. Since 0  1 u =   if and only if  '  ,u F∈   
and ( )  ˆw∈L A  if only if ( )  rw ∈L  .
     
Corollary  2  For any RAFA, there exists an equivalent s-RAFA 
having at most one additional state.

For RAFA, we adopt the concept of r-AFA introduced in 
Section 5, inspired by the work of [19,21,32], and extend 
to RAFA in this paper. Now, we introduce a variant of 
s-RAFA called rs-RAFA (with “r” indicating reversal and 
“s” indicating that the starting state cannot be reached in 
any computation). The rs-RAFA operates similarly to an 
s-RAFA, but with the input string read in reverse The rs-
RAFA framework serves as the foundation for the learning 
algorithm designed for RAFA. The following theorem 
naturally follows from the results presented earlier in 
Theorem 1, Theorem 6, and Corollary 2. 
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Theorem 7 For each language L that is accepted by a DFA 
with n states, there exists an equivalent rs-RAFA with at 
most1 + [(log2 n)] states.

We now formulate a new paradigm for inferring a state 
machine model learning algorithm, residual alternating 
finite automata represented as a system of residual language 
equations, which uses active state machine learning 
algorithms for learning regular sets. rs-RAFA



( , , , , )R Q s F g= ∑
can be described naturally as a set of residual language 
equations that parallels the solutions of algebraic equations. 
Moreover, the solution of such systems of residual equations 
is the class of regular languages. Then the following system 
( )ˆL R  of residual language equations can be used to describe 

ˆ :R

( ) ( ) ( ) ( )

( ) ( )
 

.  ,                       6

       1
 

      

q q q
a q Q

q
q

Res X a g a X f

if f
f

otherwise

ε∑ ε

 
= = + ε 
 

 ε =ε = 
∅

∑L

                 

(6)

In the system ( )Res L  of equations, ( ),qg a X  and have been 
defined earlier. The Boolean function ( ),qg a X  is considered 
as being given by a Boolean expression in  qXB . Any system 
of residual language equations of the above form has a unique 
solution for each ,    qX q Q∈ . Furthermore, the solution for 
each qX  is regular. The system of equations (6) corresponds 
to the set of residual language equations of L. That is, each 
residual language equation exactly corresponds to the states 
of ˆ . That is, there is a bijection between residual language 
equations of L and the states of the minimal rs-RAFA.

Angluin’s-Style L* Learning algorithm
We briefly review the classical automata learning algorithm 

L* by Angluin [3]. The algorithm L* demonstrates that the 
class of regular language could be learned efficiently by 
fully constructing the minimal DFA. A  for a given regular 
language L such that L (A )=L .Such a minimal DFA is 
learned    using membership and equivalence queries between 
a learner and teacher. To do this, the learner may ask the 
teacher, who knows about the language, two types of classical 
queries:

Membership Queries: The learner selects a word *  w∈ ∑  
in the target language and the teacher replies whether or not 
w∈L . 

Equivalence Queries: Does a given hypothesis automata 
(H) recognize the target language? That is, whether 
L=L(H)? The learner selects a hypothesis automaton H, and 
the teacher answers whether or not L is the language of H. 
If yes, then the algorithms terminate; otherwise, the teachers 
provides a counterexample, which is a word in the symmetric 
difference of L and L(H).

The learner maintains an observation table T (rows, cols) 
over two finite sets *,   S E ⊆ ∑  respectively. For any u∈  and 

( )   ,  ,  1u a T u a∈ ∑ = if and only if the word ua∈L . In other 

words, T has one complete row of derivatives. Intuitively, 
each row of T approximates a derivative of the target language 
L. However, the content of T may be incomplete because no 
membership queries have not been asked yet for some words w. 
The table T is closed if one-letter derivatives are in the table. 
Intuitively, membership query words are used by the learner 
to identify the different derivatives of the target language L, 
enabling the construction of an automaton from T. Broadly, 
based on the observed behavior, the learner can infer a model 
of the canonical DFA for L, by formulating a polynomial set 
of membership queries. It is important to highlight that the 
L* algorithm encapsulates the essence of innovation, and it is 
the first of its kind [3]. The class of regular languages could 
be learned efficiently (i.e., in time polynomial in the size of 
the canonical DFA for the language L. Many implementation 
details are omitted in this section, and we will be discussed 
and exploited in the next sections.
Revisiting L* through Residual Language Learning 
and Reversal Alternation

Indeed, while regular languages may pose challenges for 
learning using residual alternating finite automata (RAFA), 
this paper focuses on a particular subtype of RAFA known as 
rs-RAFA. This specialized form of RAFA, with its properties 
of reversal alternation and residuality, can be efficiently 
learned along the analogical lines of  L*. The combination of 
reversal alternation and residuality in rs-RAFA renders them 
exponentially more concise than DFA making them valuable 
tools for learning regular languages.

Definition 11 Given a learner-teacher-expert (LTEx) framework 
capable of answering classical and reversal membership and 
equivalence queries, the active learning task is to construct 
the minimal RAFA (rs-RAFA) and consequently deriving the 
minimal DFA for an unknown regular language L over ∑ in 
polynomial time.

Now, we describe an enrichment of the standard framework 
L* for learning regular languages by introducing additional 
information and various types of queries. Specifically, we 
introduce an extension of membership and equivalence queries 
known as reversal membership and equivalence queries. In these 
queries, the input is consumed in reverse, and the correct- ness 
of the reversed hypothesized RAFA H is assessed. Theorems 6 
and 7 provide further details and insights into these extensions. 
A learner wants to learn a regular language L over a fixed 
alphabet ∑ represented by a specific type of finite automata, 
namely residual alternating finite automata (RAFA). This 
learning framework model is featured by a teacher and an expert 
who define the active learnability according to their capabilities 
and access to information about the target language. The RAL*  
active learning algorithm is distinguished by its capability for 
query refinement, facilitated by the teacher’s ability to seek 
assistance from the expert to fulfill the request of the learner.

Importantly, we distinguish between the roles of the teacher 
and expert. The teacher plays an intermediate role by refining 
and forwarding the learner’s queries to the expert. While the 
teacher can address basic membership and equivalence queries, 
it also has access to supplementary knowledge from the expert. 
In comparison to the teacher, the expert answers reversal 
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membership query r-MQ and reversal equivalence query (r-
EQ). The expert provides accurate and insightful responses to 
queries related to reverse operations and equivalence between 
different types of automata, namely rs-RAFA and DFA.

Ask To this end, the learner repeatedly makes queries to 
the teacher, typically operating in a black-box fashion and 
accessing the language in question through the expert. Unlike 
the standard version of Angluin’s algorithm, which forms 
the basis of L* the active learning process in our framework 
involves a trilateral interaction between three components: the 
learner, teacher, and expert. This interaction is summarized in 
four mappings: (a) a membership query between the learner 
and teacher, ( b )  a reversal membership query between the 
teacher and expert, ( c )  an equivalence query between the 
learner and teacher, and ( d )  a reversal equivalence query 
between the teacher and expert. The teacher has access 
to the language in question through the expert and can answer 
two different types of queries: membership query (MQ) and 
equivalence query (EQ). The expert has access to the language 
in question through the conversion of rs-RAFA and DFA and 
can answer two different types of queries: reversal membership 
query (r-MQ) and reversal equivalence query (r-EQ). These 
results are stated in Theorems 6 and 7, depicted in Figure 4, 
and highlighted in Algorithm 1.

Algorithm 1 Learner-Teacher-Expert (LTEx).

(a)	 Learner-Teacher: The membership query ( ) MQ L  consists 
in asking the teacher if a word *  w∈ ∑ ∈L  (RAFA). The 
teacher reformulates the request and forwards it to the 
expert who replies “yes” or “no” depending on whether 

  rw∈ L  or not.
(b)	 Teacher-Expert: The reversal membership query is 

r-MQ consists in asking the expert if a word *   w in ∑ ∈ L  
(RAFA) (Theorems 6 and 7). The experts “yes” or “no” 
depending on whether   rw L∈ (RAFA) or “not”

(c)	 Learner-Teacher consists in asking the teacher whether a 
hypothesis RAFA ( )L H  is correct, i.e., whether ( )=L H  L

The teacher answers “yes” ( )L H
 
of is correct or returns a 

counterexample.
(d)	 Teacher-Expert: The reversal equivalence query r-EQ 

consists in asking the expert to use the relationship 
between RAFA (i.e., rs-RAFA) and DFA). That is, 
whether ( )   r rH =L L (RAFA). The expert answers “yes” 
if H is correct or returns a counter example.

The learner interactively refines the learner’s request 
by querying the expert. The expert, possessing complete 
knowledge, helps generalize the partial knowledge of 
the teacher, who guides the learner. Consequently, the 
RAL* algorithm produces an RAFA that is isomorphic 
to the canonical minimal RAFA of the target language L. 
Throughout the learning process, the learner maintains 
and updates two sets: a prefix-closed set *⊆∑U   containing 
candidate words for identifying states, and a suffix-closed 
set *⊆∑   containing words used to distinguish these states. 
Both sets,  u and v, contain the empty string ϵ. By issuing 
membership queries, the learner determines whether all 
strings uv∈ U  or uav∈ ∑ U   belong to the language L. The 
results are organized into an observation table ( ), ,T = U  T  
for L, where T is a mapping function defined as follows:

( ) ( ) { }
( ) { }

      ” ” )                    
      ” ”              

U U V yes if wis accepted
x

U U V no if wis not accepted
∪ ∑ × →=  ∪ ∑ × →

T

where ( )w∈ ∪ ∑  U U  . The table 𝕋 is of dimension 
( )     ∪ ∑ × U U 

,
 where the elements entries of both rows 

and columns are {“yes”, “no”}. The values of each entry are 
the outcome of a membership query for the concatenation of 
the row and column strings. Let ( ) ,u∈ ∪ ∑ U U  we associate 
with every u a function ( ) { }: ” ”,  ” ”row u yes no→  such that 

( )( ) ( )row u v uv= T .  We call such a function row of u and 
the set of all rows is denoted by Rows (𝕋). Now, define by 
Rowsupp (𝕋) and Rowslow (𝕋) the upper and lower parts of 
𝕋, respectively.  That is, ( ) ( )T  {  |  }uppRows row u u= ∈ U  and 

( ) ( )T {  |  }lowRows row u u= ∈ ∑ U . Rows labeled by the elements 
of C are the candidates for states of the automaton being 
constructed, and columns labeled by the elements of    
correspond to distinguishing experiments for these states. 
Rows labeled by elements of Σ are used to construct the 
transition function.

Closedness and Consistency
The table  𝕋  is closed if for all   u∈U  and   a∈∑ , there is 
'  u ∈U  such that ( ) ( )'row ua row u=
The table 𝕋 is consistent if for all , '  u u ∈U  and   a∈∑ , 

there is '  u ∈U such that ( ) ( )  'row u row u=  which implies that 
( ) ( )  ' .row ua row u a=

Figure 4: The LTEx trilateral learning framework.
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The primary objective of active learning is to find a rs-
RAFA of minimal size that adequately satisfies the learner’s 
membership and equivalence queries. Below the algorithm 2, 
is the pseudo-code outlining the learning algorithm for RAL*.

Algorithm 2 RAL* Algorithm

1: Input: ( )MQ L  and ( ) ,EQ L  target language: *⊆ ∑L
2: Output: RAFA 
3: Prefix-closed Set: { }*    ;⊆∑ = εU
4: Suffix-closed Set: { }*    ;⊆∑ = ε
5: Initialize the observation table: 𝕋 ( ) , ,  T = U  T  for ;L
6: repeat
7:     while T is not closed and not consistent do 
8:                        (i) The learner-teacher perform ( )MQ L
9:                             (ii)The teacher-expert perform ( ) rr MQ− L
10:                       if 𝕋 is not closed then 
11:                          find , '  ,   ,   u u v a∈ ∈ ∈∑U   such that
12:                          ( ) ( )  'row u row u=  and
13:                          ( ) ( )( )  'row ua row u a v≠ ;
14:                          { }  ;av→ ∪  ;
15:                          update(𝕋);
16:             end if
17:             if 𝕋 is not consistent then
18:                          find   u∈U  and    a∈∑ such that
19:                          row(ua) ≠ row(u');
20:                          { }    ua→ ∪U U ;
21:                          update(𝕋);
22:                    end if
23:             end while
24: until Equivalence Query Succeeds
25: Comments: /* 𝕋 is both closed and consistent; */
26: Comments: /* H  Construct H  */;
27: Comments: /* Perform the equivalence queries with the 
hypothesis H  */; 
28: (i) The learner-teacher perform ( )( );EQ L H
29: (i i)The teacher-expert perform ( )( );rr EQ− L H
30:
31: if the reverse equivalence query, rr EQ− L  , fails then
32:             the expert-teacher return a counterexample u;
33:             ( )    ;prefix u→ ∪U U
34:             update(𝕋);
35: end if

If the table 𝕋 is closed and consistent the learner constructs 
hypothesized RAFA H = (Σ, Q, s, F, g) where

•	 Q is the set of states, Q = {row(u) | u ∈U}
•	 q0 is the starting states, ( ){ }0   q row= λ
• 	 F  is the set of final states, ( )  {    |  }F q Q q= ∈ λ = +
•	 g is the transition function,  

( )( ) ( ) ( ),   ,     )row u a row ua row u Q and a= ∈ ∈∑

In the RAL*, the learner eventually submits H as an 
equivalence query to the teacher inquiring whether L(H) = L.  It 
is imperative that the observation table maintains the properties 
of closeness and consistency throughout the learning process. If 
at some step 𝕋 violates closeness, this is solved by adding the 
string 'u  into the set .∑U  Similarly, if 𝕋 is inconsistent, this is 
solved by adding a into the set .  If an automaton fails an 

equivalence query, the teacher must provide a counterexample 
— a word that highlights a discrepancy between the conjectured 
automaton and the target language.

Conclusion
In this paper, we have investigated a new framework called 

LTEx which incorporates two theoretical metaphors known as 
reversal alternation and residuality. The first is a generalization 
of nondeterminism and the second is a discernment of linguistic 
facts from the semantics of the state of RAFA where each state 
represents a residual language. This has led to a new online active 
algorithm called residual reversal-alternating (RAL*), viewed 
through the lens of L*. Furthermore, we exploit the succinct 
mappings between rs-RAFA, RAFA and DFA to develop RAL*. 

The logic of such mappings involves a set of membership and 
equivalence queries, which are referred to as MQ, EQ, r-MQ 
and r-EQ, between the learner, teacher, and expert. By utilizing 
the concept of residuality, we also introduced residual language 
equations that precisely correspond to the states of rs-RAFA. That 
is, there is a bijection between the residual language equations 
of L and the states of the minimal rs-RAFA. Such models can 
be naturally described as a set of residual language equations 
that mirror the solutions of algebraic equations. Furthermore, 
the solution of such systems of residual language equations 
belongs to the class of regular languages. The results of this 
paper extend the current research on learning regular languages 
and have highlighted some issues for further investigation, such 
as grammatical inference learning.
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