
Page 1 of 8

 Original Article

Citation: Murali G, Venu Gopal U, Jithendra Reddy A, Hemalatha S. Multi-PDF RAG Chatbot Using LangChain
and Streamlit. GJEIIR. 2025;5(5):098

Global Journal of Engineering Innovations &
Interdisciplinary Research

GJEIIR. 2025; Vol 5 Issue 5

Multi-PDF RAG Chatbot Using LangChain and
Streamlit

G Murali1, U Venu Gopal, A Jithendra Reddy, S Hemalatha
1Assistant Professor, Department of Computer Science and Engineering, JNTUA College of Engineering, Pulivendula
2M.Tech Students, Department of Computer Science and Engineering, JNTUA College of Engineering, Pulivendula

Correspondence
Dr. G. Murali, M.E, Ph.D.
Assistant Professor, Department of
Computer Science and Engineering, JNTUA
College of Engineering, Pulivendula

•	 Received Date: 25 May 2025

•	 Accepted Date: 15 June 2025

•	 Publication Date: 27 June 2025

Keywords

Streamlit; PDF Document Processing; Natural
Language Processing (NLP); Large Language
Models (LLM); Retrieval-Augmented
Generation (RAG); Multi-PDF Summarization;
Semantic Search; Embedding-based
Retrieval; Contextual Question Answering;
Vector Databases; LangChain; Document
Ingestion Pipeline; Text Chunking;
Information Retrieval; Generative AI;
Interactive Web Application; User-centric
NLP Interface; AI-powered Knowledge
Base; End-to-End LLM Pipeline; Explainable
Document Analysis.

Copyright

© 2025 Authors. This is an open- access article
distributed under the terms of the Creative
Commons Attribution 4.0 International
license.

Introduction
Large Language Models (LLMs) are great

at generating responses that sound human, but
there’s a catch — they’re limited by the data
they were trained on. In fast-changing fields
where new information constantly emerges,
these models can quickly become outdated.
This can lead to incomplete answers or even
inaccuracies, especially when the stakes
are high and decisions rely on up-to-date
knowledge.

That’s where Retrieval-Augmented
Generation (RAG) comes in. RAG enhances
LLMs by allowing them to pull information
from external sources — like PDFs, databases,
or websites — in real time. This means the
model isn’t just guessing based on past training
data; it’s using current, verified information to
generate responses. That makes RAG an ideal
approach for tasks that require deep, accurate
knowledge.

In this report, we walk through our
experience building a RAG system that
uses PDF documents as its main source of
knowledge. We share our process step-by-
step, from design choices to development to
evaluation. Along the way, we highlight the

Abstract

The exponential growth of unstructured textual data, particularly in portable document format (PDF),
presents significant challenges in extracting, summarizing, and retrieving actionable knowledge. This
research presents an intelligent, lightweight, and scalable web-based application—Multiple PDF
Streamlit—that bridges traditional document handling with cutting-edge AI capabilities. Powered by
Large Language Models (LLMs) and enhanced through Retrieval-Augmented Generation (RAG), the
system enables seamless ingestion, parsing, and semantic interrogation of multiple PDF documents
in parallel. By employing a hybrid architecture that combines text chunking, embedding-based vector
search, and context-aware generation, the platform offers dynamic	 question-answering,	
multi-document summarization, and an interactive user interface for knowledge exploration. The backend
pipeline leverages modern frameworks like LangChain and FAISS/Chroma for efficient retrieval, while
the front-end is built using Streamlit, providing a real-time, user-friendly interface. This synthesis of
NLP, semantic search, and interactive AI creates an end-to-end system capable of transforming static
PDFs into a living, searchable knowledge base. The application not only democratizes access to LLM-
powered insights but also exemplifies the future of explainable and interactive document intelligence
systems

technical challenges we faced and how we
tackled them. We also compare working with
commercial tools like OpenAI’s models and
open-source alternatives such as LLaMA,
especially when it comes to data privacy and
security.

Our goal is to provide practical guidance for
anyone looking to build or improve a RAG-
based system — whether you're a developer,
researcher, or organization — and help you
make smart choices around accuracy, reliability,
and transparency based on your specific needs.
Literature Survey

This section delves into prior work that lays
the foundation for our approach, highlighting
ethical concerns, the evolution of document
processing, the transformative role of large
language models (LLMs), and the mechanics
behind Retrieval-Augmented Generation
(RAG) systems.

Ethical Perspectives and the Evolution of
Document Processing

Recent studies have compared traditional
scenario- based chatbots with those powered
by large language models (LLMs), focusing

Page 2 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

on how each handles recommendations. Beyond their technical
differences, the analysis raised key ethical questions around
fairness, transparency, privacy, and accountability in LLM-
driven systems. The findings emphasized the need to embed
ethical thinking into the development and evaluation of
conversational AI, and called for stronger industry practices and
deeper academic research to ensure responsible AI deployment.

In parallel, the field of document processing has undergone
a major shift, especially with the growth of NLP technologies.
LLMs now play a critical role in enhancing chatbot capabilities,
particularly in dealing with the overwhelming volume of textual
data. Personalized chatbots that can summarize documents and
answer user queries have become increasingly important.

One notable approach involved using extractive summarizers
to pull out core insights from scientific papers, helping address
information overload. Researchers found that considering the
structural complexity of text led to more effective summaries—
especially for languages that lack robust NLP toolsets. This
underlined the value of deeper text comprehension in generating
high-quality, concise summaries. The study also explored how
conversational interfaces, like chatbots, intersect with AI ethics
in practical applications.

The Rise of Large Language Models (LLMs)
The emergence of LLMs such as GPT-3.5, GPT-4, LLaMA,

and Mistral has significantly reshaped natural language
processing. These models have shown exceptional performance
in tasks like summarization, translation, code generation, and
open-ended question answering. Despite their strengths, they
still face limitations in multi-document scenarios, constrained
by fixed context windows, memory challenges, and occasional
factual inaccuracies.

One study introduced LangChain, a framework designed
to streamline the process of querying information from PDF
documents using LLMs. By combining natural language
processing with user- friendly tools like Streamlit, LangChain
simplified data access and improved the efficiency of retrieving
relevant information from dense text sources.

Another line of research explored the idea of using LLMs
themselves as reference standards—or “oracles”—for evaluating
summary quality. Methods like GPTScore and GPTRank,
supported by contrastive learning techniques, allowed smaller
summarization models to perform on par with larger LLMs
when judged using LLM-generated criteria. Experiments
on benchmark datasets such as CNN/DailyMail and XSum
confirmed that this approach could make smaller models more
effective, reducing the need for heavy computational resources
while maintaining quality.

UnderstandingRetrieval-Augmented Generation (RAG)
Retrieval-Augmented Generation (RAG) blends two key

components of NLP: Information Retrieval (IR) and Natural
Language Generation (NLG). First proposed by Lewis et al.,
RAG enhances language model responses by retrieving relevant
information from large external datasets before generating
the output. This significantly improves both the accuracy and
contextual relevance of responses.

Unlike traditional language models that rely solely on their
internal training data (often outdated or incomplete), RAG
systems dynamically fetch up-to- date knowledge from external

sources. This grounding process ensures that the generated
content reflects the most current and factual information
available.

A typical RAG workflow consists of several core stages:

Data Collection

The process starts with gathering domain-specific text data
from various sources such as PDFs, structured files, or plain text
documents. This curated collection serves as the foundation for
a custom knowledge base, allowing the system to respond with
more targeted and accurate answers.

An illustration of this workflow can be seen in Figure 1,
showing how RAG systems enhance the capabilities of LLMs
by anchoring outputs in real-time, relevant data.

Data Preprocessing

Once the raw data is collected, it goes through a preprocessing
stage to make it cleaner and more usable. This involves
removing unnecessary elements like special characters or
formatting issues, standardizing the text, and then breaking it
down into manageable parts—usually smaller chunks or tokens
such as words or phrases. Segmenting the text this way is crucial
because it helps the system later on by making the retrieval
process faster and more accurate.

Creating Vector Embeddings

After the data is cleaned and chunked, each segment is
converted into a numerical format—known as a vector
embedding. Embedding models like BERT or Sentence
Transformers are used here to capture the meaning and context
of each chunk in a high- dimensional vector form. These vectors
allow the system to measure semantic similarity between a
query and stored data. All these vectors are then saved in a
Vector Store—a special type of database designed for fast and
efficient similarity searches.

Retrieving Relevant Information

When a user enters a query, it’s first converted into a vector
embedding using the same method applied to the documents.
The Retriever component of the system then compares this
query vector with those stored in the Vector Store, pulling out
the most relevant data chunks. This ensures that the information
feeding into the next step is both highly relevant and up-to-date.

Augmenting Context

Next, the retrieved information is blended with the general

Fig. 1: Architecture of Retrieval Augmented Generation(RAG) system.

Page 3 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

knowledge already built into the language model. This dual
approach combines the LLM’s built- in understanding with
current, domain-specific content from external documents. By
doing this, the system grounds its output in both long-term
knowledge and real-time data, creating a more well- rounded
and context-aware response.

Response Generation by the LLM

The user’s original question—now enriched with the
most relevant supporting information—is passed to a Large
Language Model like GPT, T5, or LLaMA. The model uses this
full, context-packed input to generate a response that is not only
fluent and natural- sounding, but also factually accurate and
directly tied to the source material.

Final Output

Unlike traditional language models that may produce vague or
inaccurate answers, RAG systems are designed to be transparent
and reliable. By tying their responses back to real data, they help
reduce hallucinations, improve accuracy, and make it easier to
trace where the information came from. The result is a more
trustworthy, precise, and insightful AI- generated response.

Modular NLP Pipelines: LangChain and Beyond
Modern frameworks like LangChain, Haystack, and

LlamaIndex have made it significantly easier to build Retrieval-
Augmented Generation (RAG) systems. These toolkits take
care of much of the behind-the- scenes complexity—like
loading documents, chunking text, generating embeddings,
setting up vector stores, and chaining components together.
They also support multi-step reasoning, integration with APIs,
and customized prompt design, making them powerful tools for
creating intelligent document agents.

Low-Code Web Deployment with Streamlit
As AI systems become more advanced, there’s a growing

need to make them easy to interact with. Streamlit has become
a go-to platform for this because it allows developers to build
interactive web apps with minimal coding. Unlike traditional
front-end frameworks, Streamlit is fast, responsive, and doesn't
require deep knowledge of web development. Its seamless
compatibility with NLP tools and RAG workflows has enabled
the creation of real-time, user- friendly research applications—
perfect for demos, prototypes, or lightweight production tools.

Innovation Behind the Multiple PDF Streamlit Project
The Multiple PDF Streamlit Project brings all of these

technologies together into a practical, user-friendly application.
It provides a complete pipeline that can:

•	 Load and parse multiple PDF documents,

•	 Break content into context-aware chunks and embed
them semantically,

•	 Retrieve the most relevant information using vector
search,

•	 Use LLMs to summarize content and answer user
questions,

•	 And deliver all of this through a clean, interactive
Streamlit interface.

This project is a powerful example of how cutting- edge tools

like LLMs and RAG can be brought into real-world use through
accessible, low-code environments. It opens up advanced AI
features to users who may not have a technical background,
blending automation with thoughtful user interface design.

Contributions to Research and Industry
This project pushes the boundaries in several key areas:

multi-document question answering, semantic exploration of
documents, and making AI more transparent and explainable.
Its modular, easy-to- adapt design makes it ideal for deployment
in sectors like healthcare, legal, education, and enterprise
knowledge management.

Not only does it serve academic research with its focus on
explainability and semantic reasoning, but it also provides
a practical framework for real-world document intelligence.
By combining real-time feedback, transparent pipelines, and
user-centered design, this system aligns well with the goals of
Explainable AI (XAI) and next-generation NLP applications.
Framework Architecture

The core goal of this project is to develop a web-based
application that allows users to upload PDF documents and
receive intelligent summaries and responses powered by
large language models. This system integrates tools such
as Streamlit for the frontend interface, LangChain for NLP
pipeline management, and OpenAI’s APIs for text generation
and embeddings.

OpenAI is a leading research organization that focuses
on advancing artificial intelligence technologies for societal
benefit. They conduct extensive research across domains such
as natural language processing, robotics, and reinforcement
learning. Among their most impactful contributions are the
Generative Pre- trained Transformer (GPT) models, which can
produce human-like text from a wide range of inputs. These
models support tasks like summarization, translation, and
natural language understanding, and they serve as the backbone
of this system.

The system's architecture, as illustrated in Figure 2, begins
with the user uploading a PDF document. The content is
then extracted using the PdfReader class from the PyPDF2
Python library, which is widely used for parsing and reading
PDF files. Once the document text is extracted, it is broken
into smaller, manageable segments known as chunks. These
chunks are necessary for efficient processing and retrieval.Each
chunk is converted into a numerical representation known as
an embedding, which captures its semantic meaning. These
embeddings are essential for tasks such as similarity search and
semantic comparison. The embeddings used in this project are
generated using the OpenAI Embeddings class, accessed via the
LangChain library. This allows us to represent each chunk of
text in a high-dimensional space where similar meanings are
placed closer together

The embeddings are then stored in a vector database, which
serves as a knowledge base for semantic search. This database
allows for rapid retrieval of relevant

content based on the user's query. When a user submits a
question, the system first converts it into an embedding and then
performs a semantic search through the vector store. The most
relevant chunks of information are retrieved and ranked based
on similarity.

Page 4 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

scripts without requiring knowledge of frontend technologies
like HTML, CSS, or JavaScript. With minimal code, users can
add interactive widgets such as sliders, buttons, and data input
fields [18].

As shown in Figure 5, our application's interface displays
informational content on the left side of the screen, with the
core feature — a chatbot for querying PDF files — as the main
focus. This solution integrates Streamlit with LangChain and
OpenAI’s language models, providing a quick and efficient way
for users to get answers from uploaded PDFs.

Results and Implementation
A confidential API key was generated through the OpenAI

platform and securely stored in a local environment, ensuring it
is treated with the same level of security as a password to prevent
public exposure. Once the API key was generated (as shown in
Figure 4), it enabled the integration of OpenAI’s services into
our project for research and application development.

The frontend of our application was built using Streamlit,
a user-friendly open-source Python tool that simplifies the
development of web interfaces. It allows developers to design
interactive and responsive web applications directly from Python

Figure 2. Architecture of the Model

Figure 3. Proposed Block Diagram

Figure 4. Creating the OpenAI API Key

Figure 5. Interface of the Application

Figure 6. Uploading the PDF

The system begins by verifying if a PDF file has been
uploaded (i.e., checking whether the ‘pdf’ variable is not null).
Once a file is detected, a PdfReader object is created using the
PyPDF2 library to extract its contents (as illustrated in Figure
6). The script iterates through the file, extracting text from each
page and compiling it into a single string for processing.

Upon successful upload of the PDF, the question- answering
chatbot is initialized. The user can then pose queries based on
the content of the PDF (Figure 7 shows an example).

Figure 7. Responses Generated by the Model Results

Page 5 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

Prompt 1

Adaptive_Large_Language_Model_LLM- Based_
Multiagent_Systems', please summarize the pdf in approximately
200 words including all the details that have been discussed in
the paper.

The paper introduces an innovative strategy for managing
multi-agent systems (MASs) within autonomic computing.
It focuses on leveraging large language models (LLMs),
specifically GPT-based models, to enhance the adaptability
and communication among agents. The study presents a
new architectural framework based on the MAPE-K model,
facilitating dynamic adaptation of systems. The proposed model
was tested using a marketplace simulation, where autonomous
agents demonstrated decision-making and adaptive behaviors
using embedded LLMs. Future work aims to assign individual
OpenAI accounts to each agent and explore additional real-
world scenarios. The findings suggest a paradigm shift in
how MASs can become more self- adaptive through LLM
integration, opening up new research avenues for complex
agent-based systems.

Prompt 2: What is the Self-adaptive Large Language
Model?

Result:

A self-adaptive large language model (LLM) refers to an
AI framework integrated into multi-agent systems (MASs) to
improve their communication and flexibility. These models, such
as GPT-4, enable agents to adjust their behaviors dynamically
and handle intricate scenarios effectively. This adaptability is
rooted in the MAPE-K loop, a system management framework
that supports decision- making in fluctuating environments
(refer to Figure 9).

from the retrieved content. The system used the 'stuff' chain type
in which multiple documents are appended to the prompt for
processing by the LLM. Semantic search significantly enhanced
the relevance and accuracy of results by interpreting user intent
and context effectively.

Preliminary Evaluation of the Guide
Feedback Process Overview

This report underwent an informal evaluation aimed at
gathering feedback for the section: "Using OpenAI’s Assistant
API: GPT Series" [4.2.1]. Although the feedback process was
informal, it provided valuable insights that contributed to
refining the guide. The feedback received from participants
indicated that the workshop was successful. The majority
of attendees were able to follow the guide effectively and
successfully implemented their RAG models by the end of the
session.

Figure 8. Results for Prompt 2

The original study explored a self-adaptive MAS powered
by LLM/GPT-based architecture, emphasizing autonomous
reasoning and intelligent decision-making capabilities in agents.

Our experiments evaluated the system using a variety of
documents across different domains. The system excelled in
extracting critical information from PDFs and generating precise
summaries, outperforming conventional methods. The chatbot
demonstrated quick and accurate responses within seconds,
ensuring user satisfaction. The retrieval process first fetches
relevant documents, and a QA chain then constructs responses

(b) Primary Area of Expertise

Figure 9: Demographic Information from Participants

The feedback was gathered from a small but diverse group
during the workshop. A total of eight individuals completed
a demographics form, which helped us understand the
backgrounds and technical expertise of the participants. The
group comprised individuals with varying levels of experience
in machine learning, natural language processing (NLP), and
using tools for Retrieval Augmented Generation (RAG). Most
participants were familiar with Python and OpenAI models.

KeyFeedbackPoints
Throughout the session, participants shared their thoughts on

how their understanding of RAG systems had improved, which
aspects of the workshop they found most valuable, challenges
they encountered, and suggestions for future improvements.
Below are the key points highlighted by the participants.

Before attending the workshop, most participants reported
a reasonable level of familiarity with RAG systems. This
background allowed for more in-depth discussions during
the session. After the workshop, a noticeable improvement in
participants’ understanding of RAG systems was observed.

Page 6 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

The majority of participants highlighted the practical coding
exercises as the most valuable aspect of the workshop, which
helped them better understand how to implement RAG systems.
Additionally, several participants emphasized the importance of
the discussions that followed the exercises.

Figure 10: Participants’ Familiarity with RAG Systems

Figure 11: Participants’ Improvement in Understanding RAG Systems

Figure 12: Most Valuable Aspects of the Workshop

Incorporating Feedback to Improve the Guide
The evaluation also provided insight into how the guide could

be improved, particularly in terms of clarifying instructions
and streamlining the implementation process. Technical issues
were the most commonly raised concerns, particularly those
related to errors that occurred when copying from PDF files.
To address this, error handling was incorporated into the code
snippets to throw meaningful errors, allowing users to run the
code smoothly.

Figure 13: Feedback on Challenges Faced During the
Implementation of the Guide

Several participants shared that while the guide was helpful,
there were occasional challenges related to the technical setup,
particularly the handling of errors when dealing with complex
PDF files.

In conclusion, the feedback gathered during the evaluation
was invaluable in confirming the effectiveness of the approach
outlined in the guide. By testing it in a hands-on workshop
environment and discussing the improvements in the RAG
models, we were able to address areas where practitioners faced
difficulties. The guide’s iterative improvements, based on real-
world feedback, not only made it more user- friendly but also
demonstrated the importance of continuous enhancement driven
by user input.

Figure 14: Comments and Suggestions for Improving the Guide

Discussion
Professionals in sectors such as healthcare, legal services,

and customer support frequently face challenges when working
with static models that depend on outdated or narrowly scoped
information. Retrieval-Augmented Generation (RAG) models
present a practical alternative by drawing real-time insights from
relevant sources. The transparent, traceable decision-making
process enabled by RAG models enhances trust, especially in
domains where evidence-based conclusions are vital.

In this study, a RAG implementation guide was developed
and evaluated through a workshop where participants followed
structured steps to build and deploy RAG systems. This hands-
on approach provided a valuable, practice-oriented contribution,
equipping users with clear, executable instructions to integrate
RAG into their workflows. In doing so, the guide contributes
to the expanding library of AI- powered problem-solving tools.

Moreover, RAG technology introduces promising research
possibilities poised to influence the future landscape of natural
language processing (NLP) and artificial intelligence (AI).
As the ecosystem matures, several areas of growth emerge,
including optimized information retrieval strategies, dynamic
data adaptation, and support for diverse data formats like visual
and audio content. The rapid advancement of supportive tools
has further propelled the deployment of RAG systems. Key
emerging trends in this domain include:

1.	 Haystack: This open-source platform combines dense
and sparse retrieval techniques with advanced language
models. It supports real-time search applications and
can be used to build RAG solutions for tasks such
as summarization, document retrieval, and question
answering [4].

2.	 Elasticsearch with Vector Search: Modern
enhancements to Elasticsearch allow it to handle dense

Page 7 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

vector searches efficiently. When integrated with
systems like Faiss, Elasticsearch facilitates hybrid
retrieval strategies, effectively balancing precision and
performance for large-scale datasets [3].

3.	 Integration with Knowledge Graphs: Researchers are
actively investigating the use of structured data sources
like knowledge graphs to enrich RAG models. This
approach is aimed at boosting the factual consistency
and reasoning depth of the models, making them more
dependable for data-intensive use cases [8].

4.	 Adaptive Learning and Continual Fine- Tuning: A
rising focus area is enabling RAG systems to incrementally
improve using new inputs and user interaction. These
techniques help maintain model relevance and accuracy
in constantly changing information environments [7].

5.	 Cross-Lingual and Multimodal Capabilities: Future
developments are expected to extend RAG systems
across multiple languages and data types. Incorporating
capabilities for multilingual retrieval and processing of
non-textual data (e.g., images or audio) will significantly
broaden the scope and impact of RAG systems [2]. Future
research will likely prioritize adaptability, multilingual
support, and deeper integration with heterogeneous data
to tackle increasingly sophisticated information needs.

Limitations
While the proposed framework offers substantial benefits, it

does have certain constraints. It depends on pre-trained large
language models, such as OpenAI’s GPT, which may struggle
to accurately interpret or summarize complex and highly
specialized content outside their original training distribution.
Although these models generate fluent and coherent responses,
their effectiveness diminishes with niche or uncommon topics.

Moreover, the reliance on cloud-based solutions such as
OpenAI introduces potential concerns related to data security,
user privacy, and long-term platform availability. These
limitations underscore the importance of model fine-tuning
and careful deployment planning to maintain the reliability and
resilience of chat-based applications, especially in domains
requiring high accuracy and sensitivity.

Conclusion & Future Recommendations
This study presents a comprehensive methodology for building

tailored chatbot systems leveraging large language models
(LLMs), with a focus on tasks like question answering and
document summarization. By incorporating tools like Streamlit,
LangChain, and OpenAI’s models, the framework effectively
mitigates the challenge of information overload, enabling users
to extract valuable insights from dense textual data.

The guide serves as a practical tutorial, showing developers
how to construct full-scale applications for summarization and
question-answering using modern AI stacks. The integration of
powerful LLMs with LangChain’s NLP features and Streamlit’s
accessible interface design results in a flexible, efficient solution
ideal for researchers and developers tackling complex text
processing tasks.

For future development, several enhancements are
recommended:

•	 Model fine-tuning to increase domain specificity and
reliability

•	 Integration of adaptive AI to improve model
responsiveness to new data

•	 Expansion of chatbot functionality, including broader
task support and cross- domain capabilities

This framework holds the potential to transform user
interaction with textual data by improving efficiency, fostering
knowledge discovery, and increasing overall productivity across
various fields.

Lastly, it is essential to reiterate the challenges associated with
dependence on external APIs like OpenAI. Data governance,
long-term access, and system robustness remain critical
concerns. Thoughtful planning, including the possibility of
local deployment or hybrid models, will be crucial to ensure the
safe and sustainable use of such advanced technologies.

References
1.	 Balage Filho, Pedro Paulo, TA Salgueiro Pardo, and M.

das Gracas Volpe Nunes. "Summarizing scientific texts:
Experiments with extractive summarizers." In Seventh
International Conference on Intelligent Systems Design
and Applications (ISDA 2007), pp. 520-524. IEEE, 2007.

2.	 Bang, Junseong, Byung-Tak Lee, and Pangun Park.
"Examination of Ethical Principles for LLM-Based
Recommendations	 in Conversational AI." In 2023
International Conference on Platform Technology and
Service (PlatCon), pp. 109-113. IEEE, 2023.

3.	 Prasad, Rajesh S., U. V. Kulkarni, and Jayashree R.
Prasad. "Machine learning in evolving connectionist
text summarizer." In 2009 3rd International Conference
on Anti- counterfeiting, Security, and Identification in
Communication, pp. 539-543. IEEE, 2009.

4.	 Nalini, N., Agrim Narayan, Akshay Mambakkam Sridharan,
and Arkon Pradhan. "Automated Text Summarizer Using
Google Pegasus." In 2023 International Conference on
Smart Systems for applications in Electrical Sciences
(ICSSES), pp. 1-4. IEEE, 2023.

5.	 Patil, Dinesh D., Dhanraj R. Dhotre, Gopal S. Gawande,
Dipali S. Mate, Mayura V. Shelke, and Tejaswini S. Bhoye.
"Transformative trends in generative ai: Harnessing large
language models for natural language understanding and
generation." International Journal of Intelligent Systems
and Applications in Engineering 12, no. 4s (2024): 309-
319.

6.	 Topsakal, Oguzhan, and Tahir Cetin Akinci. "Creating large
language model applications utilizing langchain: A primer
on developing llm apps fast." In International Conference
on Applied Engineering and Natural Sciences, vol. 1, no.
1,pp. 1050-1056. 2023.

7.	 Monks, Thomas, and Alison Harper. "Improving the
usability of open health service delivery simulation models
using Python and web apps." NIHR Open Research 3
(2023).

8.	 Pokhrel, Sangita, and Shiv Raj Banjade. "AI Content
Generation Technology based on Open AI Language
Model." Journal of Artificial Intelligence and Capsule
Networks 5, no. 4 (2023): 534-548.

9.	 S, Adith Sreeram A, and Pappuri Jithendra Sai. “An
Effective Query System Using LLMS and Langchain.”
International Journal of Engineering	 Research	
& Technology,July 4, 12(6), 2023. 367 -369

Page 8 of 8

G. Murali et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):098

GJEIIR. 2025; Vol 5 Issue 5

10.	 Liu, Yixin, Alexander R. Fabbri, Pengfei Liu, Dragomir
Radev, and Arman Cohan. "On learning to summarize
with large language models as references." arXiv preprint
arXiv:2305.14239 (2023).

11.	 Prasad, Rajesh S., U. V. Kulkarni, and Jayashree R.
Prasad. "Machine learning in evolving connectionist
text summarizer." In 2009 3rd International Conference
on Anti-counterfeiting, Security, and Identification in
Communication, pp. 539-543. IEEE, 2009.

12.	 Nalini, N., Agrim Narayan, Akshay Mambakkam Sridharan,
and Arkon Pradhan. "Automated Text Summarizer Using
Google Pegasus." In 2023 International Conference on
Smart Systems for applications in Electrical Sciences
(ICSSES), pp. 1-4. IEEE, 2023.

13.	 Patil, Dinesh D., Dhanraj R. Dhotre, Gopal S. Gawande,
Dipali S. Mate, Mayura V. Shelke, and Tejaswini	S . 	
Bhoye. "Transformative trends in generative ai: Harnessing
large language models for natural language understanding
and generation." International Journal of Intelligent Systems
and Applications in Engineering 12, no. 4s (2024): 309-
319.

14.	 Topsakal, Oguzhan, and Tahir Cetin Akinci. "Creating large
language model applications utilizing langchain: A primer
on developing llm apps fast." In International Conference
on Applied Engineering and Natural Sciences, vol. 1, no. 1,
pp. 1050-1056. 2023.

15.	 Monks, Thomas, and Alison Harper. "Improving the
usability of open health service delivery simulation models
using Python and web apps." NIHR Open Research 3
(2023).

16.	 Pokhrel, Sangita, and Shiv Raj Banjade. "AI Content
Generation Technology based on Open AI Language
Model." Journal of Artificial Intelligence and Capsule
Networks 5, no. 4 (2023):534-548.

17.	 S, Adith Sreeram A, and Pappuri Jithendra Sai. “An
Effective Query System Using LLMS and Langchain.”
International Journal of Engineering	 Research	
& Technology,July 4, 12(6), 2023. 367 -369

18.	 Liu, Yixin, Alexander R. Fabbri, Pengfei Liu, Dragomir

Radev, and Arman Cohan. "On learning to summarize
with large language models as references." arXiv preprint
arXiv:2305.14239 (2023).

19.	 Prasad, Rajesh S., U. V. Kulkarni, and Jayashree R.
Prasad. "Machine learning in evolving connectionist
text summarizer." In 2009 3rd International Conference
on Anti-counterfeiting, Security, and Identification in
Communication,pp. 539-543. IEEE, 2009.

20.	 Nalini, N., Agrim Narayan, Akshay Mambakkam Sridharan,
and Arkon Pradhan. "Automated Text Summarizer Using
Google Pegasus." In 2023 International Conference on
Smart Systems for applications in Electrical Sciences
(ICSSES), pp. 1-4. IEEE, 2023.

21.	 Patil, Dinesh D., Dhanraj R. Dhotre, Gopal S. Gawande,
Dipali S. Mate, Mayura V. Shelke, and Tejaswini S.Bhoye.
"Transformative trends in generative ai: Harnessing large
language models for natural language understanding and
generation." International Journal of Intelligent Systems
and Applications in Engineering 12, no. 4s (2024): 309-
319.

22.	 Topsakal, Oguzhan, and Tahir Cetin Akinci. "Creating large
language model applications utilizing langchain: A primer
on developing llm apps fast." In International Conference
on Applied Engineering and Natural Sciences, vol. 1, no. 1,
pp. 1050-1056. 2023.

23.	 Monks, Thomas, and Alison Harper. "Improving the
usability of open health service delivery simulation models
using Python and web apps." NIHR Open Research 3
(2023).

24.	 Pokhrel, Sangita, and Shiv Raj Banjade. "AI Content
Generation Technology based on Open AI Language
Model." Journal of Artificial Intelligence and Capsule
Networks 5, no. 4 (2023):534-548.

25.	 S, Adith Sreeram A, and Pappuri Jithendra Sai. “An
Effective Query System Using LLMS and Langchain.”
International Journal of Engineering	 Research	
& Technology,July 4, 12(6), 2023. 367 -369

26.	 Liu, Yixin, Alexander R. Fabbri, Pengfei Liu, Dragomir
Radev, and Arman Cohan. "On learning to summarize with
large language models as references."

