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Introduction
Large Language Models (LLMs) are great 

at generating responses that sound human, but 
there’s a catch — they’re limited by the data 
they were trained on. In fast-changing fields 
where new information constantly emerges, 
these models can quickly become outdated. 
This can lead to incomplete answers or even 
inaccuracies, especially when the stakes 
are high and decisions rely on up-to-date 
knowledge.

That’s where Retrieval-Augmented 
Generation (RAG) comes in. RAG enhances 
LLMs by allowing them to pull information 
from external sources — like PDFs, databases, 
or websites — in real time. This means the 
model isn’t just guessing based on past training 
data; it’s using current, verified information to 
generate responses. That makes RAG an ideal 
approach for tasks that require deep, accurate 
knowledge.

In this report, we walk through our 
experience building a RAG system that 
uses PDF documents as its main source of 
knowledge. We share our process step-by-
step, from design choices to development to 
evaluation. Along the way, we highlight the 

Abstract

The exponential growth of unstructured textual data, particularly in portable document format (PDF), 
presents significant challenges in extracting, summarizing, and retrieving actionable knowledge. This 
research presents an intelligent, lightweight, and scalable web-based application—Multiple PDF 
Streamlit—that bridges traditional document handling with cutting-edge AI capabilities. Powered by 
Large Language Models (LLMs) and enhanced through Retrieval-Augmented Generation (RAG), the 
system enables seamless ingestion, parsing, and semantic interrogation of multiple PDF documents 
in parallel. By employing a hybrid architecture that combines text chunking, embedding-based vector 
search, and context-aware generation, the platform offers dynamic	 question-answering,	
multi-document summarization, and an interactive user interface for knowledge exploration. The backend 
pipeline leverages modern frameworks like LangChain and FAISS/Chroma for efficient retrieval, while 
the front-end is built using Streamlit, providing a real-time, user-friendly interface. This synthesis of 
NLP, semantic search, and interactive AI creates an end-to-end system capable of transforming static 
PDFs into a living, searchable knowledge base. The application not only democratizes access to LLM-
powered insights but also exemplifies the future of explainable and interactive document intelligence 
systems

technical challenges we faced and how we 
tackled them. We also compare working with 
commercial tools like OpenAI’s models and 
open-source alternatives such as LLaMA, 
especially when it comes to data privacy and 
security.

Our goal is to provide practical guidance for 
anyone looking to build or improve a RAG-
based system — whether you're a developer, 
researcher, or organization — and help you 
make smart choices around accuracy, reliability, 
and transparency based on your specific needs.
Literature Survey

This section delves into prior work that lays 
the foundation for our approach, highlighting 
ethical concerns, the evolution of document 
processing, the transformative role of large 
language models (LLMs), and the mechanics 
behind Retrieval-Augmented Generation 
(RAG) systems.

Ethical Perspectives and the Evolution of 
Document Processing

Recent studies have compared traditional 
scenario- based chatbots with those powered 
by large language models (LLMs), focusing 
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on how each handles recommendations. Beyond their technical 
differences, the analysis raised key ethical questions around 
fairness, transparency, privacy, and accountability in LLM-
driven systems. The findings emphasized the need to embed 
ethical thinking into the development and evaluation of 
conversational AI, and called for stronger industry practices and 
deeper academic research to ensure responsible AI deployment.

In parallel, the field of document processing has undergone 
a major shift, especially with the growth of NLP technologies. 
LLMs now play a critical role in enhancing chatbot capabilities, 
particularly in dealing with the overwhelming volume of textual 
data. Personalized chatbots that can summarize documents and 
answer user queries have become increasingly important.

One notable approach involved using extractive summarizers 
to pull out core insights from scientific papers, helping address 
information overload. Researchers found that considering the 
structural complexity of text led to more effective summaries— 
especially for languages that lack robust NLP toolsets. This 
underlined the value of deeper text comprehension in generating 
high-quality, concise summaries. The study also explored how 
conversational interfaces, like chatbots, intersect with AI ethics 
in practical applications.

The Rise of Large Language Models (LLMs)
The emergence of LLMs such as GPT-3.5, GPT-4, LLaMA, 

and Mistral has significantly reshaped natural language 
processing. These models have shown exceptional performance 
in tasks like summarization, translation, code generation, and 
open-ended question answering. Despite their strengths, they 
still face limitations in multi-document scenarios, constrained 
by fixed context windows, memory challenges, and occasional 
factual inaccuracies.

One study introduced LangChain, a framework designed 
to streamline the process of querying information from PDF 
documents using LLMs. By combining natural language 
processing with user- friendly tools like Streamlit, LangChain 
simplified data access and improved the efficiency of retrieving 
relevant information from dense text sources.

Another line of research explored the idea of using LLMs 
themselves as reference standards—or “oracles”—for evaluating 
summary quality. Methods like GPTScore and GPTRank, 
supported by contrastive learning techniques, allowed smaller 
summarization models to perform on par with larger LLMs 
when judged using LLM-generated criteria. Experiments 
on benchmark datasets such as CNN/DailyMail and XSum 
confirmed that this approach could make smaller models more 
effective, reducing the need for heavy computational resources 
while maintaining quality.

UnderstandingRetrieval-Augmented Generation (RAG)
Retrieval-Augmented Generation (RAG) blends two key 

components of NLP: Information Retrieval (IR) and Natural 
Language Generation (NLG). First proposed by Lewis et al., 
RAG enhances language model responses by retrieving relevant 
information from large external datasets before generating 
the output. This significantly improves both the accuracy and 
contextual relevance of responses.

Unlike traditional language models that rely solely on their 
internal training data (often outdated or incomplete), RAG 
systems dynamically fetch up-to- date knowledge from external 

sources. This grounding process ensures that the generated 
content reflects the most current and factual information 
available.

A typical RAG workflow consists of several core stages:

Data Collection

The process starts with gathering domain-specific text data 
from various sources such as PDFs, structured files, or plain text 
documents. This curated collection serves as the foundation for 
a custom knowledge base, allowing the system to respond with 
more targeted and accurate answers.

An illustration of this workflow can be seen in Figure 1, 
showing how RAG systems enhance the capabilities of LLMs 
by anchoring outputs in real-time, relevant data.

Data Preprocessing

Once the raw data is collected, it goes through a preprocessing 
stage to make it cleaner and more usable. This involves 
removing unnecessary elements like special characters or 
formatting issues, standardizing the text, and then breaking it 
down into manageable parts—usually smaller chunks or tokens 
such as words or phrases. Segmenting the text this way is crucial 
because it helps the system later on by making the retrieval 
process faster and more accurate.

Creating Vector Embeddings

After the data is cleaned and chunked, each segment is 
converted into a numerical format—known as a vector 
embedding. Embedding models like BERT or Sentence 
Transformers are used here to capture the meaning and context 
of each chunk in a high- dimensional vector form. These vectors 
allow the system to measure semantic similarity between a 
query and stored data. All these vectors are then saved in a 
Vector Store—a special type of database designed for fast and 
efficient similarity searches.

Retrieving Relevant Information

When a user enters a query, it’s first converted into a vector 
embedding using the same method applied to the documents. 
The Retriever component of the system then compares this 
query vector with those stored in the Vector Store, pulling out 
the most relevant data chunks. This ensures that the information 
feeding into the next step is both highly relevant and up-to-date.

Augmenting Context

Next, the retrieved information is blended with the general 

Fig. 1: Architecture of Retrieval Augmented Generation(RAG) system.
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knowledge already built into the language model. This dual 
approach combines the LLM’s built- in understanding with 
current, domain-specific content from external documents. By 
doing this, the system grounds its output in both long-term 
knowledge and real-time data, creating a more well- rounded 
and context-aware response.

Response Generation by the LLM

The user’s original question—now enriched with the 
most relevant supporting information—is passed to a Large 
Language Model like GPT, T5, or LLaMA. The model uses this 
full, context-packed input to generate a response that is not only 
fluent and natural- sounding, but also factually accurate and 
directly tied to the source material.

Final Output

Unlike traditional language models that may produce vague or 
inaccurate answers, RAG systems are designed to be transparent 
and reliable. By tying their responses back to real data, they help 
reduce hallucinations, improve accuracy, and make it easier to 
trace where the information came from. The result is a more 
trustworthy, precise, and insightful AI- generated response.

Modular NLP Pipelines: LangChain and Beyond
Modern frameworks like LangChain, Haystack, and 

LlamaIndex have made it significantly easier to build Retrieval-
Augmented Generation (RAG) systems. These toolkits take 
care of much of the behind-the- scenes complexity—like 
loading documents, chunking text, generating embeddings, 
setting up vector stores, and chaining components together. 
They also support multi-step reasoning, integration with APIs, 
and customized prompt design, making them powerful tools for 
creating intelligent document agents.

Low-Code Web Deployment with Streamlit
As AI systems become more advanced, there’s a growing 

need to make them easy to interact with. Streamlit has become 
a go-to platform for this because it allows developers to build 
interactive web apps with minimal coding. Unlike traditional 
front-end frameworks, Streamlit is fast, responsive, and doesn't 
require deep knowledge of web development. Its seamless 
compatibility with NLP tools and RAG workflows has enabled 
the creation of real-time, user- friendly research applications—
perfect for demos, prototypes, or lightweight production tools.

Innovation Behind the Multiple PDF Streamlit Project
The Multiple PDF Streamlit Project brings all of these 

technologies together into a practical, user-friendly application. 
It provides a complete pipeline that can:

•	 Load and parse multiple PDF documents,

•	 Break content into context-aware chunks and embed 
them semantically,

•	 Retrieve the most relevant information using vector 
search,

•	 Use LLMs to summarize content and answer user 
questions,

•	 And deliver all of this through a clean, interactive 
Streamlit interface.

This project is a powerful example of how cutting- edge tools 

like LLMs and RAG can be brought into real-world use through 
accessible, low-code environments. It opens up advanced AI 
features to users who may not have a technical background, 
blending automation with thoughtful user interface design.

Contributions to Research and Industry
This project pushes the boundaries in several key areas: 

multi-document question answering, semantic exploration of 
documents, and making AI more transparent and explainable. 
Its modular, easy-to- adapt design makes it ideal for deployment 
in sectors like healthcare, legal, education, and enterprise 
knowledge management.

Not only does it serve academic research with its focus on 
explainability and semantic reasoning, but it also provides 
a practical framework for real-world document intelligence. 
By combining real-time feedback, transparent pipelines, and 
user-centered design, this system aligns well with the goals of 
Explainable AI (XAI) and next-generation NLP applications.
Framework Architecture

The core goal of this project is to develop a web-based 
application that allows users to upload PDF documents and 
receive intelligent summaries and responses powered by 
large language models. This system integrates tools such 
as Streamlit for the frontend interface, LangChain for NLP 
pipeline management, and OpenAI’s APIs for text generation 
and embeddings.

OpenAI is a leading research organization that focuses 
on advancing artificial intelligence technologies for societal 
benefit. They conduct extensive research across domains such 
as natural language processing, robotics, and reinforcement 
learning. Among their most impactful contributions are the 
Generative Pre- trained Transformer (GPT) models, which can 
produce human-like text from a wide range of inputs. These 
models support tasks like summarization, translation, and 
natural language understanding, and they serve as the backbone 
of this system.

The system's architecture, as illustrated in Figure 2, begins 
with the user uploading a PDF document. The content is 
then extracted using the PdfReader class from the PyPDF2 
Python library, which is widely used for parsing and reading 
PDF files. Once the document text is extracted, it is broken 
into smaller, manageable segments known as chunks. These 
chunks are necessary for efficient processing and retrieval.Each 
chunk is converted into a numerical representation known as 
an embedding, which captures its semantic meaning. These 
embeddings are essential for tasks such as similarity search and 
semantic comparison. The embeddings used in this project are 
generated using the OpenAI Embeddings class, accessed via the 
LangChain library. This allows us to represent each chunk of 
text in a high-dimensional space where similar meanings are 
placed closer together

The embeddings are then stored in a vector database, which 
serves as a knowledge base for semantic search. This database 
allows for rapid retrieval of relevant

content based on the user's query. When a user submits a 
question, the system first converts it into an embedding and then 
performs a semantic search through the vector store. The most 
relevant chunks of information are retrieved and ranked based 
on similarity.
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scripts without requiring knowledge of frontend technologies 
like HTML, CSS, or JavaScript. With minimal code, users can 
add interactive widgets such as sliders, buttons, and data input 
fields [18].

As shown in Figure 5, our application's interface displays 
informational content on the left side of the screen, with the 
core feature — a chatbot for querying PDF files — as the main 
focus. This solution integrates Streamlit with LangChain and 
OpenAI’s language models, providing a quick and efficient way 
for users to get answers from uploaded PDFs.

Results and Implementation
A confidential API key was generated through the OpenAI 

platform and securely stored in a local environment, ensuring it 
is treated with the same level of security as a password to prevent 
public exposure. Once the API key was generated (as shown in 
Figure 4), it enabled the integration of OpenAI’s services into 
our project for research and application development.

The frontend of our application was built using Streamlit, 
a user-friendly open-source Python tool that simplifies the 
development of web interfaces. It allows developers to design 
interactive and responsive web applications directly from Python 

Figure 2. Architecture of the Model

Figure 3. Proposed Block Diagram

Figure 4. Creating the OpenAI API Key

Figure 5. Interface of the Application

Figure 6. Uploading the PDF

The system begins by verifying if a PDF file has been 
uploaded (i.e., checking whether the ‘pdf’ variable is not null). 
Once a file is detected, a PdfReader object is created using the 
PyPDF2 library to extract its contents (as illustrated in Figure 
6). The script iterates through the file, extracting text from each 
page and compiling it into a single string for processing.

Upon successful upload of the PDF, the question- answering 
chatbot is initialized. The user can then pose queries based on 
the content of the PDF (Figure 7 shows an example).

Figure 7. Responses Generated by the Model Results
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Prompt 1

Adaptive_Large_Language_Model_LLM- Based_
Multiagent_Systems', please summarize the pdf in approximately 
200 words including all the details that have been discussed in 
the paper.

The paper introduces an innovative strategy for managing 
multi-agent systems (MASs) within autonomic computing. 
It focuses on leveraging large language models (LLMs), 
specifically GPT-based models, to enhance the adaptability 
and communication among agents. The study presents a 
new architectural framework based on the MAPE-K model, 
facilitating dynamic adaptation of systems. The proposed model 
was tested using a marketplace simulation, where autonomous 
agents demonstrated decision-making and adaptive behaviors 
using embedded LLMs. Future work aims to assign individual 
OpenAI accounts to each agent and explore additional real-
world scenarios. The findings suggest a paradigm shift in 
how MASs can become more self- adaptive through LLM 
integration, opening up new research avenues for complex 
agent-based systems.

Prompt 2: What is the Self-adaptive Large Language 
Model?

Result:

A self-adaptive large language model (LLM) refers to an 
AI framework integrated into multi-agent systems (MASs) to 
improve their communication and flexibility. These models, such 
as GPT-4, enable agents to adjust their behaviors dynamically 
and handle intricate scenarios effectively. This adaptability is 
rooted in the MAPE-K loop, a system management framework 
that supports decision- making in fluctuating environments 
(refer to Figure 9).

from the retrieved content. The system used the 'stuff' chain type 
in which multiple documents are appended to the prompt for 
processing by the LLM. Semantic search significantly enhanced 
the relevance and accuracy of results by interpreting user intent 
and context effectively.

Preliminary Evaluation of the Guide
Feedback Process Overview

This report underwent an informal evaluation aimed at 
gathering feedback for the section: "Using OpenAI’s Assistant 
API: GPT Series" [4.2.1]. Although the feedback process was 
informal, it provided valuable insights that contributed to 
refining the guide. The feedback received from participants 
indicated that the workshop was successful. The majority 
of attendees were able to follow the guide effectively and 
successfully implemented their RAG models by the end of the 
session.

Figure 8. Results for Prompt 2

The original study explored a self-adaptive MAS powered 
by LLM/GPT-based architecture, emphasizing autonomous 
reasoning and intelligent decision-making capabilities in agents.

Our experiments evaluated the system using a variety of 
documents across different domains. The system excelled in 
extracting critical information from PDFs and generating precise 
summaries, outperforming conventional methods. The chatbot 
demonstrated quick and accurate responses within seconds, 
ensuring user satisfaction. The retrieval process first fetches 
relevant documents, and a QA chain then constructs responses 

(b) Primary Area of Expertise 

Figure 9: Demographic Information from Participants

The feedback was gathered from a small but diverse group 
during the workshop. A total of eight individuals completed 
a demographics form, which helped us understand the 
backgrounds and technical expertise of the participants. The 
group comprised individuals with varying levels of experience 
in machine learning, natural language processing (NLP), and 
using tools for Retrieval Augmented Generation (RAG). Most 
participants were familiar with Python and OpenAI models.

KeyFeedbackPoints
Throughout the session, participants shared their thoughts on 

how their understanding of RAG systems had improved, which 
aspects of the workshop they found most valuable, challenges 
they encountered, and suggestions for future improvements. 
Below are the key points highlighted by the participants.

Before attending the workshop, most participants reported 
a reasonable level of familiarity with RAG systems. This 
background allowed for more in-depth discussions during 
the session. After the workshop, a noticeable improvement in 
participants’ understanding of RAG systems was observed.
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The majority of participants highlighted the practical coding 
exercises as the most valuable aspect of the workshop, which 
helped them better understand how to implement RAG systems. 
Additionally, several participants emphasized the importance of 
the discussions that followed the exercises.

Figure 10: Participants’ Familiarity with RAG Systems

Figure 11: Participants’ Improvement in Understanding RAG Systems

Figure 12: Most Valuable Aspects of the Workshop

Incorporating Feedback to Improve the Guide 
The evaluation also provided insight into how the guide could 

be improved, particularly in terms of clarifying instructions 
and streamlining the implementation process. Technical issues 
were the most commonly raised concerns, particularly those 
related to errors that occurred when copying from PDF files. 
To address this, error handling was incorporated into the code 
snippets to throw meaningful errors, allowing users to run the 
code smoothly.

Figure 13: Feedback on Challenges Faced During the 
Implementation of the Guide

Several participants shared that while the guide was helpful, 
there were occasional challenges related to the technical setup, 
particularly the handling of errors when dealing with complex 
PDF files.

In conclusion, the feedback gathered during the evaluation 
was invaluable in confirming the effectiveness of the approach 
outlined in the guide. By testing it in a hands-on workshop 
environment and discussing the improvements in the RAG 
models, we were able to address areas where practitioners faced 
difficulties. The guide’s iterative improvements, based on real-
world feedback, not only made it more user- friendly but also 
demonstrated the importance of continuous enhancement driven 
by user input.

Figure 14: Comments and Suggestions for Improving the Guide

Discussion
Professionals in sectors such as healthcare, legal services, 

and customer support frequently face challenges when working 
with static models that depend on outdated or narrowly scoped 
information. Retrieval-Augmented Generation (RAG) models 
present a practical alternative by drawing real-time insights from 
relevant sources. The transparent, traceable decision-making 
process enabled by RAG models enhances trust, especially in 
domains where evidence-based conclusions are vital.

In this study, a RAG implementation guide was developed 
and evaluated through a workshop where participants followed 
structured steps to build and deploy RAG systems. This hands-
on approach provided a valuable, practice-oriented contribution, 
equipping users with clear, executable instructions to integrate 
RAG into their workflows. In doing so, the guide contributes 
to the expanding library of AI- powered problem-solving tools.

Moreover, RAG technology introduces promising research 
possibilities poised to influence the future landscape of natural 
language processing (NLP) and artificial intelligence (AI). 
As the ecosystem matures, several areas of growth emerge, 
including optimized information retrieval strategies, dynamic 
data adaptation, and support for diverse data formats like visual 
and audio content. The rapid advancement of supportive tools 
has further propelled the deployment of RAG systems. Key 
emerging trends in this domain include:

1.	 Haystack: This open-source platform combines dense 
and sparse retrieval techniques with advanced language 
models. It supports real-time search applications and 
can be used to build RAG solutions for tasks such 
as summarization, document retrieval, and question 
answering [4].

2.	 Elasticsearch with Vector Search: Modern 
enhancements to Elasticsearch allow it to handle dense 
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vector searches efficiently. When integrated with 
systems like Faiss, Elasticsearch facilitates hybrid 
retrieval strategies, effectively balancing precision and 
performance for large-scale datasets [3].

3.	 Integration with Knowledge Graphs: Researchers are 
actively investigating the use of structured data sources 
like knowledge graphs to enrich RAG models. This 
approach is aimed at boosting the factual consistency 
and reasoning depth of the models, making them more 
dependable for data-intensive use cases [8].

4.	 Adaptive Learning and Continual Fine- Tuning: A 
rising focus area is enabling RAG systems to incrementally 
improve using new inputs and user interaction. These 
techniques help maintain model relevance and accuracy 
in constantly changing information environments [7].

5.	 Cross-Lingual and Multimodal Capabilities: Future 
developments are expected to extend RAG systems 
across multiple languages and data types. Incorporating 
capabilities for multilingual retrieval and processing of 
non-textual data (e.g., images or audio) will significantly 
broaden the scope and impact of RAG systems [2]. Future 
research will likely prioritize adaptability, multilingual 
support, and deeper integration with heterogeneous data 
to tackle increasingly sophisticated information needs.

Limitations
While the proposed framework offers substantial benefits, it 

does have certain constraints. It depends on pre-trained large 
language models, such as OpenAI’s GPT, which may struggle 
to accurately interpret or summarize complex and highly 
specialized content outside their original training distribution. 
Although these models generate fluent and coherent responses, 
their effectiveness diminishes with niche or uncommon topics.

Moreover, the reliance on cloud-based solutions such as 
OpenAI introduces potential concerns related to data security, 
user privacy, and long-term platform availability. These 
limitations underscore the importance of model  fine-tuning  
and careful deployment planning to maintain the reliability and 
resilience of chat-based applications, especially in domains 
requiring high accuracy and sensitivity.

Conclusion & Future Recommendations
This study presents a comprehensive methodology for building 

tailored chatbot systems leveraging large language models 
(LLMs), with a focus on tasks like question answering and 
document summarization. By incorporating tools like Streamlit, 
LangChain, and OpenAI’s models, the framework effectively 
mitigates the challenge of information overload, enabling users 
to extract valuable insights from dense textual data.

The guide serves as a practical tutorial, showing developers 
how to construct full-scale applications for summarization and 
question-answering using modern AI stacks. The integration of 
powerful LLMs with LangChain’s NLP features and Streamlit’s 
accessible interface design results in a flexible, efficient solution 
ideal for researchers and developers tackling complex text 
processing tasks.

For future development, several enhancements are 
recommended:

•	 Model fine-tuning to increase domain specificity and 
reliability

•	 Integration of adaptive AI to improve model 
responsiveness to new data

•	 Expansion of chatbot functionality, including broader 
task support and cross- domain capabilities

This framework holds the potential to transform user 
interaction with textual data by improving efficiency, fostering 
knowledge discovery, and increasing overall productivity across 
various fields.

Lastly, it is essential to reiterate the challenges associated with 
dependence on external APIs like OpenAI. Data governance, 
long-term access, and system robustness remain critical 
concerns. Thoughtful planning, including the possibility of 
local deployment or hybrid models, will be crucial to ensure the 
safe and sustainable use of such advanced technologies.
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