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Introduction
Differential population growth models; 

Logistic model; Stable equilibrium; 
Contractions.

Preliminariese
In 1838, P. F. Verhulst, a Belgian biologist 

and mathematician, presented a model of 
demographic growth given by the initial value 
problem with the following logistic equation 
(1.1):.

( )

( ) ( )0

1 ,                                    1.1

0 0,                                        1.2

dP PrP
dt K
P P

  = −  
 

 = >
The system (1.1)-(1.2) aims to describe 

the dynamics of some population P(t), t ≥ 
0, where P(t) can denote the number (at the 
time t) of fish, animals, bacteria, people, etc. 
Of course, we are talking of a territorially 
localized population. Also, in (1.1) P(t) is 
a differentiable function of time t which 
approximates the (discrete) number of 
members in the population.

In this model, the evolution of the 
population size P(t) is considered starting 
at a fixed moment t0, which is conveniently 
denoted as t0 = 0.

In (1.2), P0 is a given positive starting 
population size. The (first order) differential 
equation (1.1) includes two model parameters; 
r and K which are given positive constants:
•	 r > 0 is called growth rate (or 

coefficient);
•	 K > 0 is called maximum support 

Abstract

We consider a general model of population growth given by a differential equation. Assuming that the 
right-hand side of the equation is unknown, we approximate the model under consideration using the 
classical logistic model. We establish two inequalities that evaluate the accuracy of the approximation:

(a) Upper bounds for the uniform proximity of trajectories in bounded time intervals.
(b) An upper bound for the difference between asymptotically stable states.

The results are new and original. To obtain them, we used the contractions technique, well-known in the 
theory of differential equations.

capacity of the environment (or, in other 
terminology, carrying capacity of the 
environment).

Under the initial condition (1.2), equation 
(1.1) has a unique solution, given by the 
following formula:

( ) ( ) [ ) ( )0

0 0

, 0, .               1.3rt

KPP t t
P K P e−= ∈ ∞
+ −

Since in (1.3) 0rte− →  when t→∞, we 
have the following asymptotic behavior of 
trajectories:

( )   ,when P t K t→ →∞

that is, in this model, for all large enough 
times t, the population size P(t) is close to 
the maximum support capacity K of the 
environment.

The number K is the unique asymptotically 
stable equilibrium of equation (1.1).
Approximations and estimation of the 
stability (robustness) of the logistic 
model

The logistic model (1.1)-(1.2) is one of the 
basic models of population growth of a species 
in presence of environmental restrictions. 
However, there rarely are situations in which 
this model can be applied in its “pure form". 
For example, the dynamics of the American 
population between 1790 and 1910 were well 
reproduced by the logistic model (see Chapter 
1 in [5]). The growth of some populations of 
fish follows the logistic equation (1.1). (See, 
for example, [1].)
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Of course, until now many different modifications and 
extensions of the logistic model have appeared. Regardless, in 
this article we focus on the logistic model in the context of its 
robustness. We are interested in the question: to what extent 
can equation (1.1) work as a reasonable approximation to an 
unknown (for the researcher) “real" equation that describes 
the growth of a certain population ( ) [ ], 0,x t t∈ ∞ .The actual 
differential equation mentioned above (see (2.2) below) may not 
be revealed to the researcher.

On a qualitative level, the function (changing P for x)

( ) ( )1 ,  0                                     2.1
def

g x xx rx
K

 = − ≥ 
 

in the right side of equation (1.1) reflects well the growth of 
some populations, having in mind the environmental restrictions. 
However, for a population growth process ( )x t  the parameters r 
and K in (2.1) may not be constant, but depend (to some extent) 
of the time t and the population size. For example, the carrying 
capacity K can vary because of technological and climatic 
changes. In general, in the differential equation corresponding 
to the “real model", the function ( ),g t x   can be different from 
the function g in (2.1).

Thus, we assume that the “real" trajectory ( ) [ ], 0,x t t∈ ∞  of the 
population size (in which we are interested) is the solution to the 
following initial value problem

( ) ( )

( ) ( )0

, ,    0                                  2.2

0 0,                                            2.3

dx g t x t
dt
x x






= ≥

= >



 

 

where g  is an unknown function (for the researcher), for 
which the function g in (2.1) plays the role of an accessible 
approximation. The objective of the researcher is to extract 
useful information about the unknown trajectory of interest  
( ) [ ], 0,x t t∈ ∞  through the analysis of the available trajectory 
( ) [ ), 0, ,x t t∈ ∞  where (see (1.3))

( ) ( ) ( )0

0 0

,   0,                 2.4rt

Kxx t t
x K x e−= ≥
+ −

which is the solution to the initial value problem (which we 
will call “approximated model"):

( ) ( )

( ) ( )0 0

1 ,   0                               2.5

0 .                                                        2.6

dx xrx g x t
dt K
x x x

  = − ≡ ≥  
 

 = = 

In this way, the following task of evaluation of the stability 
(robustness) of the model (2.5)-(2.6) arises: To estimate the 
closeness from x(t) to ( )x t in terms of an adequate measure of 
the discrepancy between g and g .

Proximity of trajectories ( ) [ ], 0,x t t∈ ∞  and ( ) [ ), 0, ,x t t∈ ∞
 

over infinite intervals 
 We leave the parameters r, K in (2.5) fixed for now and will 

only consider the initial values 0 0x x=   that belong to the interval 
(0,K). In the first place, we have to guarantee the existence and 
uniqueness of the solution to the problem (2.2)-(2.3). 
Assumption 2.1.  The function g  en (2.2) is continuous, and 
for each ( )0 0,x K∈  there is a unique solution ( )x t to the problem 
(2.2)-(2.3) which is well defined for each  0t .

Note that the local existence and uniqueness of the solution 
(in some neighborhood of t = 0) follows from the continuous 
differentiability of g .

In this section, we will fix a number T > 0 and consider the 
trajectories ( )x t  and x(t) in the interval [0, T]. In addition to 
Assumption 1, we will suppose (in this section) that 

( ) [ ] [ ] ( )0, 0, .                  2.7 for each x t K t T∈ ∈

Using r from (2.5), we define the following constant:

( )
2

1

12 , ,
2                                   2.8

1 1, ,
2

def  if 

 if 

rT

T

Te T
rC

e T
r r

−

−

 <= 
 ≥


and introduce the following discrepancy measure between the 
functions ( ),g t x   and ( )g x  (see (2.2) and (2.5)):

( )
[ ]

( ) ( ) ( )
0,

0

, , .                               2.9
def

max
u K

t T

g g g t u g u
∈
≤ ≤

∆ = − 

Since a continuous function reaches its maximum in closed 
and bounded intervals, the definition in (2.9) is consistent and 
( ),g g∆ is a finite number. The stability (or robustness) inequality 

(2.10) given below states that if the (unknown) function ( ),g t x  
in (2.2) is uniformly close to the function ( )g x  in (2.5), then the 
maximum deviation of ( )x t  with respect to x(t) is also small. 
Consequently, the logistic trajectory ( ) [ ], 0,x t t T∈  given in (2.4) 
can be used to approximate (and analyze) the (“real”) trajectory  
( ) [ ], 0,x t t T∈  of the population in question. This same inequality 

(2.10) allows us to estimate the error of the approximation.
The proof of the below Theorem 2.1 uses the technique 

presented in Chapter 3 in [2].

Theorem 2.1.  Suppose that ( )0 0 0,x x K= ∈ . Under Assumption 
2.1 and (2.7), the following inequality holds:

( ) ( )( ) ( ) ( )2

0
, ,                   2.10max rt

Tt T
e x t x t C g g−

≤ ≤
− ≤ ∆ 

where TC  and ( ),g g∆   are defined in (2.8) and (2.9).

Let [ ]0,X T≡   be the space of all continuous functions 
( ) [ ]., 0,z t t T∈  We equip X with the following metric: for 

( ) ( ), ,z z t y y t X= = ∈
 
let

( ) ( ) ( )( ) ( )2

0
, .                   2.11

def
max rt

t T
d z y e z t y t−

≤ ≤
= −

We define two operators T and :T X X→ . For ( )z z t X= ∈  let:

[ ] ( )( ) [ ] ( )

[ ] ( )( ) [ ] ( )

0 0

0 0

,  0, ,                   2.12

 , ,  0, ,               2.13

def

def

t

t

Tz t x g z s ds t T

Tz t x g s z s ds t T

= + ∈

= + ∈

∫

∫



where the function g was defined in (2.1) and g  is the right 
side of equation (2.2).

We will verify that if ( )x x t=   is the solution to the problem 
(2.2)-(2.3), then

( ),                                              2.14x Tx=  

or
[ ] ( )Tx t x t=

   for each [ ]0,t T∈ . In fact, rewriting (2.14) as 

( ) ( )( ) [ ]0 0
, ,  0, ,

t
x t x g s x s ds t T= + ∈∫  

and differentiating this inequality (using the continuity of g ), 
we get   

( ) ( )( ) [ ], ,  0, ,
dx t

g t x t t T
dt

= ∈


 
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which is equation (2.2).

Similarly, if x = x (t) is the solution to the problem (2.5)-
(2.6), then 

x = Tx                                               (2.15)
(see (2.12)).

In other words, the functions ( )x x t=   and ( )x x t=  are fixed 
points of the operators T  and T, respectively.

The next step is to verify the inequality (2.16) below: if 
z = z (t), y = y(t) are elements of X such that ( ) [ ]0, ;z t K∈  
( ) [ ]0, ,y t K∈  [ ]0, ,t T∈  then

( ) ( ) ( ), 0.5 , .                             2.16d Tz Ty d z y≤

First, we verify that for all numbers [ ],, 0,u u K′∈

( ) ( ) ( ).                           2.17g u g u r u u≤′− − ′

Indeed, (see (2.1)), ( ) 21 ug u r
K

 = − 
 

′  and the maximum value 

of ( )g u′  in [0, K] is r.

Then, (2.17) follows from the inequality: 
( ) ( )

[ ]
( )

0,
sup

c K
g u g u g c u u

∈
′≤′− − ′

Then, by (2.12) and (2.17), for each [ ]0,t T∈

[ ] [ ] ( )( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( )

0 0

0

0

2 2

0

 

                       

                      

                      

t t

t

t

t rs rs

Tz t Ty t g z s ds g y s ds

g z s g y s ds

r z s y s ds

r e e z s y s ds− −

− = −

≤ −

≤ −

= −

∫ ∫

∫
∫
∫

≤ see ( ) ( ) ( )2

0
2.11 , .                       2.18

t rsr e d z y ds≤ ∫
But

( )2 2 2

0

1 11 .
2 2

t rs rt rte ds e e
r r

= − <∫
The combination of (2.18) and (2.19) implies that 
[ ] [ ] ( ) 20.5 , rtTz t Ty t d z y e− < . Dividing the last equation by 

e2rt, we get that [ ] [ ] ( )2

0
0.5 ,sup rt

t T
e Tz t Ty t d z y−

≤ ≤
− ≤  or, in view of 

(2.11), ( ) ( ), 0.5 ,d Tz Ty d z y≤

According to (2.11), to prove (2.10) we need to find an upper 
bound for ( ),d x x . Using (2.14), (2.15), (2.7), (2.16) and the 
triangle inequality for the metric d, we get:

                                  ( ), ( , )d x x d Tx Tx= ≤

 

                                  ( ) ( ), ,d Tx Tx d Tx Tx+ ≤

  

                                  ( ) ( )0.5 , , , ord x x d Tx Tx+ 

  

                                  ( ) ( ) ( ), 2 , .                              2.20d x x d Tx Tx≤ 

  

Applying (2.11), (2.12) and (2.13), we obtain that

   ( ) ( )( ) ( )( ){ } ( )2

0 00
, , .           2.21max

t trt

t T
d Tx Tx e g x s ds g s x s ds−

≤ ≤
= −∫ ∫

    

Then, using (2.9) and (2.7),

( )( ) ( )( ) ( )( ) ( )( )
0 0 0

, ,
t t t
g x s ds g s x s ds g x s g s x s ds− ≤ −∫ ∫ ∫     

                                  
( ) ( ) ( )

0
 , , .                       2.22

t
g g ds t g g≤ ∆ = ∆∫  

From (2.21) and (2.22) it follows that

                            ( ) ( ) ( )2

0
, , .                       2.23max rt

t T
d Tx Tx g g te−

≤ ≤
≤ ∆

  

When differentiating, we easily see that the function  
( ) 2 ,

def
rth t te−=  t ≥ 0 takes its maximum at 1

2*t r
= , and also is 

increasing in [0, t*].

Then, ( ) ( ) 1

0

1 1
2*max

t T
h t h t e

r
−

≤ ≤
= =  if 1

2
T

r
≥  and ( ) ( ) 2

0
max rt

t T
h t h T Te−

≤ ≤
= =

 
if

  1
2

T
r

≥
 
.

Taking into account the definition of CT in (2.8), in both 
cases,

                           ( )
0

1 .                                         (2.24)
2

max Tt T
h t C

≤ ≤
≤

Joining inequalities (2.20), (2.23) and (2.24), we get the 
desired inequality (2.10).

Example 2.1.  Let in (2.2) ( ) ( ), , 1 ,xg t x r t x x
K

 = − 
 



     , that is, 
the “real model" (2.2)-(2.3) is given by a differential equation 
similar to (2.5), but instead of the constant growth rate r, 
we admit that this coefficient can depend on the size of the 
population x  and the time t.

We suppose that the function ( ),r t x   is such that Assumption 
2.1 and inequality (2.7) hold, and for a “small" given ε > 0,

[ ]
( ) ( )

0,
0

, ,                                   2.25max
x K

t T

r t x r
∈
≤ ≤

− ≤ ε


 

where the constant r appears in (2.4), (2.5).
According to (2.9),

( )
[ ]

( )( )
[ ]

2 2

0, 0,
0

, , .
4

max max
u K u K

t T

u u Kg g r t u r u u
K K∈ ∈

≤ ≤

 
∆ = − − ≤ ε − = ε 

 
 

Then, ( ),
4
Kg g∆ ≤ ε  and by (2.10),

                           
( ) ( ) ( )2

0
.                       2.26

4
max rt

Tt T

Ke x t x t C−

≤ ≤
− ≤ ε

We consider, for example, the following numeric data:
•	 T = 5 (years);
•	 K = 1 (a million animals);
•	 r = 0.1;
•	  0 0 0.2x x= =  (millions)
•	 Also, let in (2.25) ε=0.01.

Using the “approximated model" (2.5)-(2.6), by (2.4) we get:  

( )

( )
0.5

0.25 0.2919
0.2 0.8

                                    291.9  thousand animals

x
e−= ≈

+
=

On the other hand, in (2.8), T = 1 / 2r = 5, and 

1 11 10 3.7TC e e
r

− −= = <

Then, in this example, the right side of inequality (2.10) is 
less than 13.7 0.01 0.00925

4
⋅ =  (see (2.26)). According to (2.10),

( ) ( ) 25 5 0.00925 0.02514.rTx x e− ≤ ⋅ <
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Therefore, the error of the estimation of the unknown value 
( )5x , using the approximation by the logistic model (2.5)-(2.6), 

is less than 25.14 thousand animals, that is, ( ) [ ]5 266.76,317.04x ∈

(in thousands of animals).

Observation 2.1.  The simple method used above to prove 
the inequality (2.10) also works for differential equations with 
control, and even for controlled stochastic equations (see [3]).

Robustness of the asymptotic behavior of the logistic 
model

Let us rewrite equation (2.5) using the notations y and τ for 
the corresponding variables (instead of x and t in (2.5)):

                                    
( )1 .                                   2.27dy yry

d K
 = − τ  

For the analysis of the qualitative properties of its solution 
( )y τ , in particular the fact that:

( ) ( ),                                         2.28lim y K
τ→∞

τ =

without loss of generality we can suppose that

                                   r = K = 1                                         (2.29)

Indeed, as it is easy to verify, with the change of variables t = 
rτ and 

yx
K

= , equation (2.27) becomes the following particular 
logistic equation (with r = K= 1):

                                  
( ) ( )1 .                                   2.30dx x x

dt
= −

Fixing an initial value ( )0 0,1x ∈ , the only solution of (2.30) is 
the following strictly increasing function.

                
( ) ( ) ( )0

0 0

,   0,                                   2.31
1 t

xx t t
x x e−= ≥
+ −

such that

( ) ( )1.                                       2.32
def

*lim
t

x t x
→∞

= =

Considering in what follows that all equations have variables 
for which (2.29) is valid, we go back to the “real population" 
model (2.2)-(2.3), but now we assume that:

a	 the function g   in (2.2) does not depend on the time t;
b	 the initial value problem given in (2.33) has a unique 

solution ( )x t , which is well defined for all t ≥ 0. Here, 
we deal with the initial value problem:

                         

( )

( )
( )

0

,
                                             2.33

0 ,

dx g x
dt
x x

 =

 =



 

 

where, as before, the function x - x2 in (2.30) works as an 
available approximation for the unknown function g   in 
(2.33).

In many situations, the most important thing to know is not 
the proximity of ( )x t (the solution of (2.33)) to x(t) (the solution 
of (2.30) with 0 0x x=   over short periods of time, but the answers 
to the following questions:

1.	 When does the following limit exist:

                          ( ) ( )?                                             2.34*lim
t

x t x
→∞

= 

2.	 In what conditions is *x  close to x* = 1 (see (2.32))?
In other words, we are interested in the affinity of the 

asymptotic behavior of the “approximated" and “real" models.
3.	 Under what conditions is the “real" trajectory ( ) ,x t  

[ ]0,t∈ ∞  a strictly increasing function of time?

To give reasonable answers to these questions, we need the 
following assumption.
Assumption 2.2. 

(a)	 The function g  in (2.33) is differentiable.
(b)	 ( )0 0g =  and ( )0 0'g >

(c)	 In (0, ∞), the algebraic equation ( ) 0g x =  has a unique 
root *x  which belongs to the interval [0.8,1.2], that is,         

                                [ ]0.8,1.2 .*x ∈

(d)	  For each  [ ] ( )0.8,1.2 , 0' x g x∈ <

Observation 2.2.
a	 The interval [0.8,1.2] appears because we will show that  

( ) ,*lim
t

x t x
→∞

=   and evaluate the closeness of *x  to x* = 1 in 
(2.32).

b	 Assumption 2.2, (b) could be changed for ( )0 0.g x >

Theorem 2.2.  Suppose that { }( )0 0 * 
0,  min 1, x x x= ∈  . Under 

Assumption 2.2, we have that:
•	 The solution ( ) [ ), 0,x t t∈ ∞  of the problem (2.33) is a strictly 

increasing function of time, and ( ) 0.,x t x t< ≥ 

•	 ( ) ( ).                                                                        2.35*lim
t

x t x
→∞

= 

•	 ( ){ } ( )1

0.8 1.2
1 min 0.2, 2.27 max ,                       2.36*  

x
x x f x−

≤ ≤
− ≤ − 

where ( )1f x−
  is the inverse function of the following function

                    ( ) ( ) [ ] ( ), 0.8,1.2 .                               2.37
def

f x x g x x= − ∈

Proof. In the first place, we observe that in view of Assumption 
2.2, (d), in the interval [0.8,1.2] the inverse function 1f −

  of the 
function f  in (2.37) is well defined. In fact, ( ) ( )1 1,' 'f x g x= − >



and the function f  is strictly increasing.

Assumption 2.2, (b) and (c) tells us that the points   and   are 
equilibrium states of the autonomous equation

( ) ( )dx g x x f x
dt

= ≡ −




   

(see (2.37)). Also (see (b) and (d) of Assumption 2.2 and, for 
example, the book [4]), the equilibrium 0'x =  is unstable, but 
the equilibrium [ ]0.8,1.2*x ∈  is asymptotically stable.

It is well-known (consult, for example, [6]) that every 
trajectory of an autonomous first order differential equation is a 
strictly monotonic function (as long as x0 is not an equilibrium). 
On the other hand, the trajectory cannot approximate or cross 
the level corresponding to an unstable equilibrium (see [6]). 
Then, ( )x t  should increase strictly, and since ( ) 0,*x t x t< ≥   it 
must be that ( ) *x t x→   when .t →∞  
To obtain the inequality (2.36), we see that the point 1*x =  is the 
solution of the equation x = x2 (see (2.30)), or x x=  According 
to Assumption 2.2, (c) and (2.38), ( ) ,* *x f x=  

 or ( )1
* *x f x−=  

. 
Then,                      

( )

( )

( )

( )

1

1

1

0.8 1.2

1

0.8 1.2

1 1

                          1

                          ( ) 1

                          0.55911 .

* * * *

* * *

'
* * *

*

max

max
x

x

x x x f x

x x f x
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Subtracting the first term, we get:
( )1

0.8 1.2
1 2.269 .* max

x
x x f x−

≤ ≤
− ≤ − 

Example 2.2.  
a	 For some ε ∈ [0,0.1], let us consider the case when in (2.33) 

( ) ( ) 21g x x x= + ε − . It is easy to see that Assumption 2.2 
holds in this case.

 	 The equation ( ) 21 0x x+ ε − =  leads us to 1*x = + ε . Then, the 
left side of inequality (2.36) is equal to ε.

 	 On the other hand, we will estimate the right side of 
(2.36). By (2.37), ( ) ( ) 2 21f x x x x x x = − + ε − = −ε + 

 . Let z 
∈ [0.8,1.2]. To find ( )1f z−

  we have to solve the quadratic 
equation 

       
( )

2

2

2
1

   ,  
0,

      .
2 4

or
whose positive root is

x x z
x x z

f z z z−

−ε + =

− ε − =

ε ε
= + + >

Since 
1 1
2

z z
z

+ δ = + δ +… , the maximum (in [0.8,1.2]) of 
( )1f z z− −  is reached for z = 0.8. Therefore, the second 

term in the right side of (2.36) is

                   
( )

2

2.27 0.8 0.8 .                                   2.39
2 4

 ε ε
+ + −  

 

For example, for ε = 0.1, the expression in (2.39) is less than 
0.1167. Having in mind that the left side of (2.36) is 0.1, we 
can conclude that in this example the “stability inequality" 
(2.36) works perfectly (that is, it is quite precise).

Example 2.3.  For a given ε ∈ [0,0.1], let in (2.33), (2.38) 
( ) 2 4g x x x x= − − ε , or in (2.37) ( ) 2 4f x x x= + ε . To find the 

inverse ( )1f z−
  we have to solve the equation 2 4x x z+ ε = , or 

with y = x2,  y + εy2 = z, or εy2 + y - z = 0. The positive root is  
1 1 4

2*
zy − + + ε

=
ε

. Therefore,

                    
( ) ( )

1/2

1 1 1 4 .                                   2.40
2

zf z−  − + + ε
=   ε 



Using (2.40), it is not difficult to verify that the function 
( )1z f z−−   is positive and increasing in the interval [0.8,1.2]. 

Therefore, the maximum in (2.36) is reached in the point x = 
1.2.
Suppose that ε = 0.1. With a little arithmetic, we find that the 
right side of the inequality (2.36) is less than 0.1246.

To find the value of the equilibrium ,*x  we need to look for 
the positive (and real) root of the equation: ( ) 0,g x =

 or 
2 4 0,x x x− − ε = or 31 0.x x− − ε =  Let ε = 0.1. Using the cubic 

equation solution calculator (in Google), we get that:
0.9217.*x ≈

Then, the left side of (2.36) is equal to 0.0783. We see that in 
this case the difference between the right and left sides of the 
inequality (2.36) is 0.0463.

In any case, this is half of the ε = 0.1 (which is used to compare   
( ) 2 4g x x x x= − − ε

 
with x - x2 in (2.30)).

Example 2.2.  
b	 In the formulation of Example 2.2, we will try applying the 

stability inequality (2.10) given in Theorem 2.1.
 	 Let, for example, ε = 0.1 and T = 0.5. Then in (2.9) (since r 

= 1 and K = 1),

[ ]
( ) ( )2 2

0,1
1 .max

x
x x x x

∈
+ ε − − − = ε

	 In (2.8) 1
TC e−= . Applying (2.10), we get that

( ) ( ) 2 0.5 1

0 0.5
0.1.max

t
x t x t e e⋅ −

≤ ≤
− ≤ ε = ε =

Observation 2.3.  It is worth recalling that, in general, an as-
ymptotically stable equilibrium is not robust to small changes 
in the parameters of the differential equation. One simpler 
example is the equation

( )( )00 0 .with dy y y y
dt

= α = >

Here, for an arbitrarily small ε > 0, y(t) → 0 if α = -ε and y(t) → 
∞ if α = ε (when t → ∞).
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