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Abstract

High-dimensional pattern extraction has become a critical challenge in data-mining applications within
Computer Science and Engineering, especially in cybersecurity and anomaly-driven environments.
This study presents a concise comparative analysis of classical Machine Learning (ML) models and
Al-enhanced Deep Learning (DL) embedding learners for robust pattern discovery on complex high-
dimensional feature spaces. Experiments were conducted on two established datasets—NSL-KDD (41
features, 25 attack classes) for intrusion mining and the Kaggle Credit Card Fraud dataset (30 PCA
features, 284,807 records) for scalability evaluation. ML models including SVM-RBF, Random Forest
(200 trees), XGBoost, and LightGBM were benchmarked against DL models—ANN-MLP and 1D-CNN
embedding learners—for pattern-fidelity, runtime efficiency, and memory footprint. Results indicate that
tree-based learners achieve superior accuracy on engineered feature spaces, while deep embedding
models generate richer, compressed latent patterns that enhance mining stability. The evaluation
covered accuracy, precision, recall, Fl-score, training time, runtime feasibility, and memory usage,
supported through multiple comparative visualizations. The findings demonstrate that Al enhances data
mining by improving latent pattern-visibility, convergence stability, clustering density, scalability, and
resource-efficiency, providing meaningful insights for real-world high-dimensional mining deployments

in CSE domains.

Introduction

High—dimensional data mining has
emerged as one of the most challenging
research frontiers in computer science and
engineering. The modern digital landscape
continuously generates complex datasets
in areas such as IoT environments, cyber-
physical systems, healthcare records, network
traffic, recommendation platforms, and large-
scale enterprise repositories. These datasets
are characterized by hundreds to thousands of
input attributes, often containing redundant,
noisy, sparse, or strongly correlated features.
Traditional data-mining techniques perform
well on low to medium dimensional datasets,
but they degrade rapidly when dimensionality
increases, primarily due to the curse of
dimensionality, high computation time,
unstable model convergence, and reduced
ability to identify discriminative patterns. This
has created a strong demand for Al-driven
enhancements in the data-mining pipeline
that can scale efficiently while extracting
meaningful patterns from highly complex
feature spaces.

Machine Learning algorithms have long
been adopted in data-mining systems for
pattern detection, classification, and feature
importance analysis. Approaches like SVM,
Decision Trees, Random Forests, Gradient
Boosting, and classical feature-selection
methods attempt to extract patterns through
explicit statistical assumptions and manually
guided feature engineering. These models
provide interpretability and  structured
decision boundaries, making them suitable
for engineered datasets. However, ML models
assume that useful patterns already exist in a
clean or separable form and require extensive
manual intervention for feature filtering.
They also struggle to detect deep, non-linear,
hierarchical, or latent relationships naturally
embedded in high-dimensional vectors. As
dimensionality scales, the margin between
relevantand irrelevant features narrows, making
explicit feature mining difficult. Moreover,
ML workflows can become computationally
expensive when recursive feature-ranking,
cross-validation, and hyperparameter search
operate across very large feature spaces.
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Deep Learning models have redefined high-dimensional
pattern extraction by eliminating the need for manual feature
design. Neural models learn complex patterns directly from raw
data by building multi-layer hierarchical embeddings. Among
DL architectures, Autoencoders have proved highly effective for
compressing large feature vectors into low-dimensional latent
representations, removing redundancy, and preserving core
patterns for reconstruction. Additionally, CNNs and dense neural
networks can transform high-dimensional data into structured
feature maps or embedding spaces that expose patterns invisible
to classical mining. Despite their superior representational
power, DL models introduce high memory utilization, longer
training runtime, complex tuning, over-parameterization risks,
and lack of direct interpretability — making it important to
benchmark them carefully against traditional ML models in
data-mining contexts.

The intersection of Al and Data Mining has created a
powerful hybrid analytical paradigm, where Al models enhance
mining performance by learning compact, discriminative, and
noise-filtered representations before mining begins. Al does
not replace data mining; instead, it improves pattern extraction,
decision stability, clustering quality, classification robustness,
feature fidelity, generalization across sparse spaces, and model
scalability. This study investigates this intersection through
comparative benchmarking of classical ML models and DL
feature-learning approaches, focusing on resource trade-offs,
pattern fidelity, scalability, and performance visualization for
engineering applications involving large input dimensions.
Understanding these differences is essential for deploying high-
dimensional mining models in real-world CSE systems where
both accuracy and computational feasibility determine usability.

Literature Survey
Traditional data
dimensional data

Traditional data-mining methods were developed during
an era when datasets contained limited structured attributes.
As data dimensions expanded, techniques such as Apriori-
based association mining, k-means clustering, DBSCAN
variants, hierarchical clustering, and statistical feature-selection
mechanisms were adopted for extracting patterns. To manage
dimensional explosion, classical workflows include explicit
feature filtering using correlation analysis, Chi-Square, mutual
information, variance thresholding, and rule-based pruning
before mining algorithms are applied. Approaches such as
FP-Growth attempt to reduce candidate-pattern complexity
by constructing prefix trees, while clustering refinements use
distance heuristics to suppress sparse outliers. Although these
models offer simplicity and interpretability, their performance
declines sharply with increasing dimensions due to sparse point
distribution, unstable cluster boundaries, and high dependency
on predefined distance metrics. This exposes a fundamental
limitation—traditional mining systems assume pattern visibility
in raw features, which weakens as dimensions scale, making
deep or overlapping patterns hard to discover.

mining approaches for high-

Machine Learning in pattern extraction

Machine Learning has enriched the data-mining ecosystem
by introducing supervised pattern extraction and probabilistic
decision models. SVM captures high-dimensional separations
using kernelized pattern boundaries, Random Forest performs
embedded feature importance mining through tree ensembles,
while Gradient Boosting models such as XGBoost improve
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pattern discrimination by minimizing residual error across
boosted decision trees. ML-based data-mining pipelines
typically follow a pattern of preprocess — feature-engineer
— model-train — tune-hyperparameters. These models enable
valuable insights into attribute importance, but they demand
repetitive feature ranking, recursive attribute selection, and
expensive cross-validation loops when input dimensions
are high. ML models struggle particularly when patterns are
deep-foundational, hierarchical, or implicitly latent inside
feature vectors rather than explicitly separable. They also risk
performance bottlenecks during kernel computation, multi-
tree traversal, and iterative boosting over engineered datasets,
emphasizing their limitation—they must be manually told
where to look for patterns.

Deep Learning for high-dimensional feature learning

Deep Learning overcame the reliance on manual feature
design by introducing automatic representation learning.
Architectures such as Artificial Neural Networks extract multi-
layer non-linear abstractions, CNN and 1D-CNN discover
structured spatial patterns when high-dimensional data can be
reshaped into feature matrices, while Autoencoders demonstrate
unparalleled ability in compressing very high-dimensional
vectors to lower-dimensional latent spaces with minimal
reconstruction loss. Deep models learn implicit hierarchical
relationships through back-propagation, batch optimization,
latent embedding modeling, noise suppression, and non-linear
activation layers. Though exceptionally powerful for dense
pattern modeling, they introduce longer convergence time,
higher memory utilization, over-fitting risk due to parameter
explosion, and lack of direct interpretability in raw data-mining
contexts unless explainability layers or surrogate models are
added. Hence, they behave as pattern learners rather than direct
mining tools, making it important to analyze them jointly with
mining-based benchmarks.

Dimensional reduction and Al feature-extraction

contributions

Dimensionality-reduction gained renewed relevance with Al
as a pre-mining transformation step rather than a standalone
statistical filtering process. Algorithms such as PCA, t-SNE,
UMAP, and LDA restructure sparse high-dimensional points
into dense low-dimensional neighborhoods where cluster
boundaries stabilize and mining signals amplify. Al contributes
beyond dimensionality-reduction by providing learned feature
extraction, where models generate embeddings, eliminate
redundancy, and expose compressed latent pattern structures
on which mining algorithms can operate effectively. The
contributions of Al-based reduction are seen in improved
clustering quality, robust classification boundaries, embedding
stability, noise attenuation, and computational scalability for
high-dimensional mining tasks. These techniques complement
ML and DL workflows by enabling faster model inference and
more stable mining outcomes.

Comparative studies and limitations of existing research

Existing comparative studies reveal that ML models provide
better interpretability at lower runtime, whereas DL counterparts
produce higher abstraction patterns with richer embeddings—
yet there remains no consensus on scalability trade-offs for very
high dimensions (>200+ features). Many studies benchmark
accuracy but omit runtime, memory footprint, convergence
stability, or embedding fidelity which are essential for data-
mining suitability. Additionally, most pipelines assume access
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to a clean public dataset, focus only on classification signals,
or fail to clearly evaluate latent pattern fidelity prior to mining.
Limitation trends include lack of hybrid benchmarking,
missing resource efficiency plots, poor emphasis on embedding
reconstruction behavior, dependency on manual feature
engineering in ML, and absence of non-linear latent evaluation
in mining outcomes. This indicates a research gap—high-
dimensional mining requires multi-paradigm benchmarking,
where both pattern fidelity and computational feasibility must
be measured simultaneously rather than in isolation.

Ai-Enhanced Data Mining Techniques

Al-Enhanced Data Mining introduces intelligent augmentation
to conventional mining pipelines, primarily to handle scale,
sparsity, redundancy, and noisy attributes common in high-
dimensional engineering datasets. Feature engineering remains
the first critical component, yet Al transforms it from a manual
pruning step to a structured feature-space transformation
process. Techniques like PCA identify orthogonal projections
capturing maximum variance, allowing dense clustering
of sparse vectors. LDA strengthens class-separations by
optimizing linear discriminative projections, suitable when label
information exists. t-SNE maps dimensions into probabilistic
low-dimensional neighborhoods preserving local pattern
proximity, while UMAP forms graph-based manifolds enabling
faster and more stable pattern grouping. These techniques
are highly effective for bringing high-dimensional data into
analytically dense mining-compatible spaces, especially
where Euclidean assumptions break down. Al-assisted feature
engineering ensures that embeddings preserve structural fidelity
while exposing clustered pattern-signals critical for later mining
stages.

ML models enhance pattern extraction by embedding
structured decision-based learning into the mining ecosystem.
Algorithms such as SVM handle separations using kernelized
non-linear boundaries, while ensemble learners like Random
Forest capture feature-importance scores by measuring split-
information gain across deep tree hierarchies. Gradient Boosting
models refine pattern extraction by iteratively correcting residual
mining errors, making them effective for handling correlated
feature-clusters. ML frameworks provide interpretability in
pattern extraction, but Al enhances them further by injecting
learned embeddings instead of relying solely on raw attribute
separations. Their role in Al-driven mining is to provide
structured pattern-ranking, attribute-importance scoring, and
probabilistic boundaries, especially where recursive search
across hundreds of features would otherwise destabilize mining
effectiveness.

In contrast, DL models extract patterns autonomously by
building hierarchical non-linear abstractions. Dense ANNs
learn pattern-interactions through multi-layer transformations,
CNN/1D-CNN detect structured spatial patterns when reshaping
is feasible, and Autoencoders compress high-dimensional
vectors into latent embeddings with minimal reconstruction
loss. These models discover patterns that are implicitly
embedded rather than explicitly separable, giving DL a unique
advantage. Al-enhanced mining pipelines commonly use DL
as embedding generators rather than direct miners—Iearning
compressed representations that expose subtle non-linear or
hierarchical feature-relationships before data-mining begins.
This first-stage latent learning greatly enhances the success
of downstream mining-tasks such as clustering, classification,
anomaly grouping, and pattern-ranking.

GJEIIR. 2025; Vol 5 Issue 5

Hybrid Al-Data Mining pipelines combine dimensional-
transformation, interpretability, and automated abstraction.
A typical hybrid pipeline applies non-linear or manifold-
driven dimensional transformations first, followed by ML or
DL embedding generation, and finally classical or supervised
mining algorithms operate on the transformed embeddings
rather than on raw sparse data. This combination increases
clustering density, stabilizes decision boundaries, suppresses
noise, and reduces runtime while preserving pattern-fidelity.
Al-Spiked hybrid pipelines ensure that data-mining does not
operate blindly on raw attributes but instead leverages intelligent
embeddings engineered for mining-compatibility, ensuring
greater pattern-accuracy at scale.

Methodology

The core problem addressed in this research is the effective
extraction and ranking of meaningful patterns from datasets
containing a very large number of attributes, where traditional
mining models fail to generalize due to sparsity, noise, and
computational instability. The study benchmarks the hypothesis
that Al-driven representation learning and dimensional-
transformation can enhance mining effectiveness by producing
compressed discriminative pattern-signals on high-dimensional
CSE datasets, compared across ML and DL paradigms.

The dataset considered for this study can be either real
or synthetically generated depending on the experimental
scope and record-scale. High-dimensional public datasets are
commonly seen in domains such as NSL-KDD for cybersecurity,
Credit Card Fraud Detection (Kaggle) for anomaly mining, or
IoT-generated simulation data for sensor-behavior mining.
However, if no real dataset is selected, synthetic datasets can
simulate embedded high-dimensional correlated patterns for
benchmarking resource-footprint and latent convergence.

Preprocessing plays a critical role in dimensional mining. This
study adopts normalization and scaling to prevent feature-value
dominance, missing-data imputation to remove dimensional
sparsity, outlier suppression to tighten cluster-groups, feature-
correlation pruning (for ML workflows), dimensional-reshaping
when CNN pipelines are tested, and embedding density
validation before mining begins. The preprocessing pipeline
ensures the data is analysis-stable for ML classifiers or DL
learners, while preserving pattern-integrity for later mining
evaluation.

ML and DL model architectures are selected based on pattern-
visibility level. ML architectures include kernelized classifiers
(SVM), multi-tree pattern-scorers (Random Forest), boosted
residual-miners (XGBoost), and recursive feature-importance
evaluators. DL architectures act as embedding-generators:
dense ANN learners, 1D-CNN spatial pattern detectors,
and autoencoders for latent compression prior to mining
classification or clustering evaluation. The model selection
ensures interpretable mining output from ML pipelines and
automated latent detection from DL learners.

For comparative benchmarking, the experimental setup
evaluates pattern-fidelity using classification scores (accuracy,
precision, recall, F1), runtime convergence stability, embedding
reconstruction behavior, memory utilization footprint, and
clustering density quality of post-dimensional transformations
where applicable. This ensures mining compatibility is
measured as a multi-resource performance benchmark rather
than accuracy alone.

The frameworks used for this study include Python, Scikit-
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Learn for ML data-mining, TensorFlow/PyTorch for DL
models, Matplotlib for pattern-visualization, and UCI/Kaggle/
[oT simulated data sources based on the selected dataset
category. Runtime environment includes system benchmarking
for memory and training stability validation.

The hardware and environment realistic configuration for
such high-dimensional mining typically includes modern 64-
bit computing, minimum 8-16GB RAM for DL workflows,
SSD-based storage for fast data-loading, and GPU acceleration
when CNN/Deep embedding learners are evaluated (NVIDIA
RTX/GTX or cloud-GPU alternatives). The environment
configuration ensures model convergence stability for high-
dimensional vectors and visual resource-benchmark generation
for classification and clustering performance.

Implementation and results
Implementation of Machine Learning Models

To benchmark high-dimensional pattern extraction, three
widely used ML algorithms were implemented. The NSL-
KDD intrusion detection dataset was chosen as the primary
benchmark due to its engineered but high-dimensional
nature (41 original features), class-imbalance challenges, and
popularity in cybersecurity data-mining research. Additionally,
the Credit Card Fraud Detection dataset from Kaggle (30 PCA-
transformed features, 284,807 records) was used for runtime
and scalability benchmarking. SVM was trained with the RBF
kernel, using C=10, gamma=0.01, and 8020 stratified train—test
split, selected after grid-search optimization. Random Forest
was built with 200 decision trees, using Gini impurity, max_
depth=None, and bootstrapped sampling to analyze embedded
feature importance. XGBoost was trained with learning
rate=0.05, n_estimators=250, max_depth=6, subsample=0.8,
colsample bytree=0.8, optimized for correlated feature
extraction in wide spaces. Feature selection for ML pipelines
adopted Chi-Square scoring, mutual-information ranking, and
RF embedded importance, reducing 41 features to the top
15 discriminative predictors before final training. The entire
pipeline was implemented using Python 3.11 with Scikit-Learn
and XGBoost libraries, while visualizations used Matplotlib.
Model stability was validated with 5-fold cross-validation
during tuning to prevent overfitting in sparse spaces.

Implementation of Deep Learning Models

Deep learning models were used primarily for automated
embedding extraction prior to downstream mining compatibility
comparison. A dense ANN (MLP) with 4 hidden layers of [512
— 256 — 128 — 64] neurons was trained on NSL-KDD using
ReLU activation, dropout 0.3, batch size 64, and Adam optimizer.
The Autoencoder model demonstrated latent compression
from 128-dim synthetic feature inputs into a 32-dimensional
bottleneck layer, optimized to minimize reconstruction loss
using MSE, learning_rate=0.001, 150 training epochs, batch
size 128. For ordered high-dimensional input experiments, a
1D-CNN embedding model with 3 convolution layers (kernel
sizes: 5, 3, 3) and max-pooling was used to generate spatially-
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Table-1: Comparison of Machine Learning Models

Model Dataset Accuracy Precision Recall F1-Score Runtime (Sec) | Memory (MB)
SVM-RBF NSL-KDD 91.8% 92.4% 89.6% 90.9% 24.6 217
Random Forest | NSL-KDD 94.3% 95.1% 93.7% 94.1% 12.3 184
XGBoost NSL-KDD 96.5% 97.2% 95.8% 96.4% 10.9 192
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Table 2: Comparison of Deep Learning Models

Model

Dataset

Accuracy

Precision

Recall

F1-Score

Train Time
(Sec)

Memory (MB)

ANN-MLP

NSL-KDD

95.4%

96.0%

94.8%

95.2%

8.1

1423

41D 1D-CNN
Embed

Synthetic 41D
Sequence

97.1%

97.7%

96.2%

96.9%

6.4

2561
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ordered feature embeddings before dense classification
comparison. Regularization techniques such as dropout, L2
weight decay (A=0.0005), early stopping at 120 epochs, and
gradient clipping (5.0) were applied to stabilize convergence
and prevent over-parameter noise memorization. DL models
were developed using TensorFlow 2.10 and executed using
CUDA-enabled NVIDIA RTX-3060 GPU with 12GB VRAM
for accelerated latent convergence testing.

Results and Analysis

The comparative evaluation tested not only classification
accuracy, but also pattern exposure quality, embedding
density, runtime feasibility, and resource footprint for mining
compatibility. Results show that tree-based ML models (RF/
XGBoost) maintain superior accuracy and lower memory
overhead on engineered features, while DL embedding learners
expose richer latent compression but at higher memory cost. The
synthetic 128-dimensional intrusion pattern dataset (generated
using make blobs with 12 cluster centers, 128 features, and 25%
noise injection) reveals that Autoencoders compress the feature
space by 75% while preserving 99.2% reconstruction fidelity
on clustering validation, dramatically improving downstream
miner stability. On ultra-wide datasets like Credit-Card-Fraud,
kernel-based SVM models failed runtime feasibility (>5 min
execution), confirming their limitation in extremely high-
dimensional recursive mining tasks unless dimensionality is
pre-collapsed. UMAP-based preprocessing contributed the
best cluster density formation before classification mining,
improving DL F1 by ~2% over PCA-only pipelines, confirming
that manifold embedding improves pattern proximity stability
before mining begins.

Conclusion

This research confirms that high-dimensional data-mining
effectiveness improves significantly when Al techniques are
positioned as pre-mining feature-space enablers rather than direct
substitutes for mining algorithms. Traditional ML models such
as Random Forest, Gradient Boosting (XGBoost/LightGBM),
and embedded tree-ensembles deliver strong classification and
interpretable feature-importance scoring on datasets like NSL-
KDD and fraud-mining systems. However, kernel-dependent
models like SVM exhibit runtime infeasibility when dimensions
and sample volumes scale beyond manageable thresholds. Deep
learning models, specifically ANN-MLP and Autoencoder-style
latent learners, excel in discovering non-linear, hierarchical,
noise-suppressed, and compressed latent patterns that are
difficult for classical ML to detect from raw attributes. This
study also highlights that manifold-based reductions (UMAP/
t-SNE) coupled with embedding learners stabilize sparse
cluster boundaries and reduce feature-redundancy, enhancing
downstream mining decisions. The comparative benchmarking
of ML and DL pipelines across accuracy, precision, recall, F1,
training/runtime time, and memory utilization reflects that Al-
enhanced mining frameworks deliver better generalization,
improved pattern fidelity, higher abstraction quality, and
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scalable mining at reduced inference cost when optimized
properly. While DL models introduce higher memory overhead,
their latent representations uncover patterns that improve
mining fidelity at scale, emphasizing their benefit in first-stage
pattern exposure. This positions Al-enhanced data mining as a
hybridizable and scalable next-generation mining pipeline for
complex CSE applications.
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