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Introduction
Although the utilization of ICT has 

increased among older adults, many 
individuals face significant challenges in web 
browsing because of deteriorating eyesight. To 
promote an inclusive society, it is essential to 
facilitate seamless web browsing experience 
for individuals with mobility impairments. 
Eye gaze-controlled web browsers [1, 2] 
have been developed to assist users with such 
impairments. An active browsing system 
is desired to both predict and preemptively 
address potential issues encountered by users. 
As shown in Figure 1, it is convenient for a 
browsing system to automatically enlarge 
text when users fixate on characters they find 
difficult to identify during web browsing. 
The development of such a browsing system 
requires the avoidance of two types of errors: 
the first occurs when characters are enlarged 
despite a user not experiencing difficulty in 
identification (Error 1), and the second occurs 
when characters are not enlarged, even though 
the user experiences difficulty in identification 
(Error 2). However, accurately predicting the 
onset of difficulty in character identification 
(which ought to be essential to decrease the 
two types of errors) is challenging because 
gaze fixation may result from various factors 
other than difficulty in character identification, 
such as issues with sentence comprehension. 
The fixation duration associated with difficulty 
in character identification is not necessarily 
longer than that associated with other causes 
(Figure 2). Consequently, it is reasonable 

to implement an AI system that learns the 
browsing patterns of individuals and enlarges 
characters based on these learned behaviors.

Reinforcement learning [3] is the most 
suitable machine learning algorithm for this 
task. Although complete training data are 
not available, the system can validate the 
appropriateness of character enlargement 
by querying users to confirm whether their 
gaze was directed on the character owing to 
difficulty in identifying it. This enables the 
system to learn the eye movement patterns 
of users who find it challenging to identify 
a character in a trial-and-error manner 
(reinforcement learning) to obtain an optimal 
method for character magnification. Notably, 
in contrast to usual reinforcement learning, 
the subsequent restriction is imposed on the 
prediction system because users request the 
system to enlarge characters by directing their 
gaze on the characters for a specified duration: 
“the system must enlarge the characters on all 
fixation points whose fixation durations are 
longer than a threshold.” Given the critical role 
of this threshold, this study employs SARSA 
learning [4] (rather than Q-learning [5]) as an 
algorithm for reinforcement learning. SARSA 
is particularly well-suited to this task because it 
allows the system to update its action (character 
enlargement or non-enlargement) based on 
actual user actions (for instance, refer [6] for a 
comparison between SARSA and Q-learning), 
thereby increasing the likelihood of accurately 
identifying an appropriate threshold. 

Abstract

This study develops a system to predict, with high precision and in real-time, the occurrence of difficulty 
in character identification during web browsing, based on gaze data. Specifically, the system leverages 
fixation duration, which evolves incrementally, and employs a reinforcement learning algorithm based 
on SARSA, to evaluate the occurrence of the difficulty at each step. Since fixation durations caused by 
character identification difficulty are not necessarily longer than those resulting from other factors, 
establishing a reliable threshold for character magnification is difficult. Nevertheless, the system must 
refrain from magnifying characters when users do not feel them difficult to identify. Therefore, this study 
introduces saccadic velocity and amplitude as two external parameters, categorizes them into distinct 
groups, and calculates the Q-value for each category pair, thereby enabling a precise determination of 
magnification thresholds. Furthermore, a method for assigning rewards and penalties to the agent is 
examined. 
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The aim of this study is to develop a system that can predict 
rapidly and accurately the occurrence of difficulty in character 
identification from users’ gaze fixations through reinforcement 
learning. In gaze data analysis [7, 8] via reinforcement learning, 
the state is typically defined as the duration of each fixation 
point. However, this approach lacks rapid prediction because it 
relies on fixation durations that have already passed. To address 
this limitation, this study proposes a novel approach in which 
the fixation duration at each fixation point increases sequentially 
and an agent (decision maker) determines whether difficulty in 
character identification occurs in each increment of the fixation 
duration. In other words, by treating each progressive time point 
of gaze fixation as a state of reinforcement learning, we enable 
the agent to enlarge a character just before the user has difficulty. 
Additionally, setting an upper limit of 3,000 ms on the fixation 
progression time for the enlargement of characters reduces the 
occurrence of Error 1. Figure 2 indicates that setting a uniform 
standard (fixation duration) for enlarging characters is nearly 
impossible. However, such a criterion is necessary because of 
the abovementioned restriction. To address this problem, this 
study introduces the saccadic velocities and amplitudes of 
users as external parameters, and provides criteria based on the 
combination of the categories of these two parameters. This 
approach is expected to improve accuracy because the criterion 
can be customized for each category. Moreover, this treatment 
aligns with psychological [9, 10] and ergonomic [11] research, 
which have reported that both fixation time and the saccadic 
velocity and amplitude vary when users encounter situations 
requiring judgment during information search or text reading. 

Specifically, the appropriate number of categories for the two 
parameters and the method for providing rewards for the agent 
are explored. The reduction of the frequency of Error 1 is given 
priority over that of Error 2 based on the understanding that users 
find Error 1 more uncomfortable and are more likely to tolerate 
slight delays, given that this is a gaze-controlled magnification.  

Related work
Extensive research has been conducted on gaze-controlled 

websites. Menges et al. [1] developed a web browser, 
GazeTheWeb, with direct gaze control for individuals with 
motor impairments. By understanding interface semantics, they 
mapped the functions of interaction elements with suitable gaze 

interaction, aiming to reduce the cognitive load associated with 
controlling an interface via eye gaze input. Furthermore, in 
comparison with the familiar (indirect) gaze-control browser, 
OptiKey [12], they demonstrated the superior performance 
of GazeTheWab in terms of response time and subjective 
usability evaluation. Kumar et al. [2] developed a secure and 
fast PIN entry system by effectively combining gaze and touch 
modalities. 

Meanwhile, the development of active web browsing systems 
has progressed to provide convenient services by predicting 
user trends and potential future issues. Salem’s [13] work on 
user interface optimization based on Genetic Programming is 
a pioneering example of such a system. Along with the rapid 
advancements in AI, research [14,15] on applying Neural 
Networks to eye-tracking technology is growing. However, 
reinforcement learning is particularly suitable for active web 
browsing. This is because the agent can explore and find optimal 
services for a user through trial-and-error, utilizing “partial” 
training data without requiring complete supervised signal. 
Deep Q-network, a combination of Q-learning and Neural 
Networks, has a significant advantage in handling large data 
sets [16] because of its ability to virtually create training data by 
incorporating neural networks. Therefore, deep Q-networks are 
primarily applied to the development of recommender and web 
navigation systems [17-19]. For instance, in the development 
of recommender systems, the user access logs over a constant 
period can serve as an effective (partial) training data because 
they are collected naturally and reflect the user’s behavior. In 
contrast, (not deep) Q-learning or SARSA is typically used to 
analyze personal gaze behavior [7, 8, 20], such as prediction 
of the next fixation point during reading (although this differs 
from the context of active web browsing). In general, tracking 
a user's gaze movement is more complex than collecting access 
logs. Additionally, training data generated virtually by Neural 
Networks may not accurately reflect user-specific properties, 
which is different from the recommendation systems. 

This study adopts SARSA learning because gaze data are 
necessary to predict the occurrence of difficulty in character 
identification. However, the method of defining states is entirely 
different from previous studies [7, 8, 20]. Notably, the uniqueness 
of this study lies in the introduction of reinforcement learning 
and eye tracking technology to achieve “active web browsing.”. 

Method
Basic Concepts

In reinforcement learning, an agent (decision maker) chooses 
an action in each state and reaches the next state; a reward is 
received if the choice is successful. The multiplication of a 
reward by -1 means that a penalty is charged if the choice fails. 
The agent learns how to choose an action in each state such that 
an expected future return is maximal. This is mathematically 
formulated as follows. Let st, at, and rt be a situation, action, and 
reward at time step t, respectively; sample values are written in 
lowercase, assume that capitalization, say St, At, and Rt, denotes 
random variables. Let Q(st,at) denote an expected (future) return 
when the agent chose  in st, called an action value function or 
Q-value, which is written in the form. 

( ) { }2
1 2, max ,|

t
t t t t t t t t ta

Q s a E R R R S s A a+ +∈
= + γ + γ + = =

A

where A is the set of all actions and γ is a discount rate. 
Given that the environment model is completely known, it is 
possible to calculate the above expectation directly. Otherwise, 

Figure 1: Browsing system automatically enlarging characters

Figure 2: Fixation durations according to causes.
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the calculation must be conducted based on the sample 
approximation. SARSA learning is valid when sampling data 
are obtained sequentially, and one wishes to update the Q-value 
using only new (collected) data at one time step. SARSA 
learning is a type of Temporal Difference learning, and its 
update formula is expressed as follows:

( ) ( ) ( ) ( )1 1, , , , , t t t t t t t t t t tQ s a Q s a r Q s a Q s a+ +← +αδ δ = + γ −     (1)
The arrow of Eq. (1) implies that the right-hand updates the 
left-hand side, α is a learning rate, and δt, called a TD error, is 
the difference between Q-values estimated at time steps t+1 and 
t. Note that an actual action is used in the update in SARSA.  
Finally, the agent can select the action in each state based on

( ),max ,argmax
t

t t t
a

a Q s a
∈

=
A                

(2)

States
An agent is a user’s personal computer, and the actions taken 

by the agent include enlargement and non-enlargement. A key 
requirement for the prediction system in this study is that, when 
a user feels difficulty in identifying a character and focuses 
their gaze on it, the agent must enlarge the character as quickly 
as possible. To achieve this, a state is defined as the elapsed 
time when fixation duration evolves step by step. If the time 
increment is Δd, the state (gaze fixation time) st at time step t is 
expressed by .   

( )1 ,mints F d t= + ∆ ⋅ −

where Fmin is the minimum fixation time (500 ms) for all gaze 
points. The formula implies that the time steps and states 
correspond one-to-one. Specifically, the time interval from 
500 to 3,000 ms was divided into 100 ms intervals so that 25 
discrete fixation times were yielded. This enables the agent to 
judge whether the enlargement of characters is conducted at 
each level of fixation time and shorten the response time. Table 
1 lists the time steps, states, and an example set of actions that 
can be chosen for the states using Eq. (2).  

Each fixation point corresponds to a game (episode) of Go or 
Chess, and the choice of an action in each state corresponds to a 
move of the game. However, the prediction system developed in 
this study is significantly different from the usual reinforcement 
learning in that a restriction (i.e., once the character enlargement 
is determined at a specific level of the fixation duration, then it 
is conducted for all fixation points whose durations exceed the 
level) is imposed because the agent is requested to enlarge the 
character following the user's gaze fixation. This restriction does 
not imply that reputation for prediction is acquired by simply 
finding a set of correct actions at each fixation point. It is unlikely 
that, beyond a certain level, the Q-values of enlargement are 
always greater than those of non-enlargement. Table 1 illustrates 
the difficulty in setting a threshold for enlarging the characters. 
Setting the threshold at a low (2,700) and a high level (2,900 
ms) increases the frequency of Errors 1 and 2, respectively. 
Nevertheless, a uniform threshold for determining whether to 
enlarge a character must be derived across all the gaze points, 
even if the results (correct actions) of several gaze points are 
sacrificed. To minimize the number of sacrificed results as small 
as possible, it is suitable to introduce the saccadic velocity and 
amplitude as external conditions and derive such a threshold 
within each group of fixation points with the same metric values. 
Specifically, let svk and sak be a saccadic velocity and amplitude 
just before a fixation point k. First, the ranges (maximal minus 

minimum values) for the velocity and amplitude are divided 
into n categories and the respective category numbers to which 
svk and sak belong are searched. Second, a Q table is constructed 
for each pair of category numbers. For example, if svk  and sak 
belong to the i-th and j-th categories (1 ≤ i, j ≤ n), respectively, 
then the Q values indexed by (i, j) are obtained, denoted Q(i,j). 
Finally, using Q(i,j), we find the minimum of those s' such that 
at = enlargement whenever st > s'. The threshold Fix(xi ) to be 
derived is defined as the minimum, which specifies the rule

st ≥ Fix(i,j)⇒ enlargement; st < Fix(i,j)⇒ non-enlargement.    (3)

t-step state Action
1  st = 500 Non-enlarge
2 st =  600 Non-enlarge
3 st =  700 Non-enlarge

⋮ ⋮ ⋮
23 st = 2700 Enlarge
24 st = 2800 Non-enlarge
25 st = 2900 Enlarge

Table 1: Time steps, states, and chosen actions

Rewards and penalties
To reduce the occurrence frequency of Errors 1 and 2, this 

subsection elaborates on a method for assessing rewards 
and penalties. Henceforth, let P (positive) and N (negative) 
correspond to enlargement and non-enlargement; both have a 
one-to-one correspondence with difficulty and non-difficulty in 
identifying characters. Precision and recall are performance 
metrics for prediction models, which are defined by the formulas.

 
TP

TP FP+   
and

  
,TP

TP FN+
where TP denotes the number of choices in which enlargement 
is correct, and FP and FN denote the number of choices in which 
enlargement and non-enlargement are incorrect, respectively. 
Since the decreases in FP and FN induce those of Errors 1 and 2 
by the formulas, it follows that the proper evaluation of rewards 
and penalties is such one that it causes the decreases in FP and 
FN. 

This consideration prompts the formulation of the following 
policy on the evaluation: 

1	 To decrease FP, the agent is prevented from enlarging 
the character for short fixation durations as much as 
possible. For short fixation durations, only a very small 
reward is given to the agent even if the enlargement is 
correct, and only a small penalty is imposed if the non-
enlargement is incorrect.  

2	 To decrease FN, the agent is forced to enlarge the char-
acters when the fixation duration is long. For this, if the 
agent does not enlarge characters in the super-long-time 
domain and the choice is incorrect, then an extremely 
large penalty is imposed on them. 

3	 We assume that rewards for enlargement monotonously 
increase, and penalties monotonously decrease as the 
fixation time progresses. The former assumption is to 
make the agent's choice consistent with the compulsory 
enlargement of more than or equal to 3,000 ms. The 
latter is based on the natural expectation that a long 
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non-enlargement accompanied by failure makes users 
uncomfortable. 

Precision and recall can be used as assessment metrics for the 
decreases of Errors 1 and 2.  Specifically, let R=100  be a basic 
reward; a magnification factor ( ) 1 25tc t≤ ≤  is determined for 
each time step t and each reward and loss are calculated by 
multiplying R by this coefficient: 

  t tr c R= ⋅  where 0tc >  for rewards and  tc <  for penalties.

Verification of model
Experiment

The stimulus was a virtual website featuring computer 
peripherals. The website contained images, names, and detailed 
descriptions of 15 products. Approximately 200 Japanese 
characters were used for each description. The layout was such 
that the products were listed vertically on one page and no page 
transitions exited. The font used was "MSP Gothic" with a size 
of 16 px, which was used in the web site of Yahoo Japan. 

The subject was a graduate student (male, 23 years old) 
in Kanazawa Institute of Technology. The participant was 
requested to browse the stimulus site freely, presented on a 14-
inch laptop PC (Panasonic CF-LF), and click the mouse when 
difficulty in character identification arose. During web browsing, 
gaze movements of the participant were recorded using an 
eye tracker (Tobii Pro Spark; 60 Hz). The saccadic amplitude 
was defined as the distance between each pair of consecutive 
fixation points and the saccadic velocity at a certain point was 
calculated by dividing the saccadic amplitude at the temporal 
point by the difference between the two sampling times. Thus, 
all fixation durations, saccadic velocities, and amplitude were 
obtained during this browsing. As a result, the total number of 
fixations (duration greater than or equal to 500 ms) was 455, in 
which the number of fixations when the participant felt difficult 
to identify a character and fixed his eyes on it was 25.

Model 1 (without external conditions)
Rewards and penalties were assigned to each state in the 

prediction model into which saccadic velocities and amplitudes 
were not introduced. Table 2 lists the magnification factor values 
for TP, TN, FP, and FN in each state. The table shows that for 

Thus, the occurrence frequency of Error 1 appeared to be 
comparatively low, whereas that of Error 2 was high. This result 
is attributed to our attempt to decrease the frequency of Error 1 
as much as possible. However, from a practical point of view, it 
is uncertain whether the frequency level is acceptable.

Model 2 (with external conditions)
Using the rewards and penalties listed in Table 2, a prediction 

model was constructed by introducing saccadic velocities and 
amplitudes. The maximum and minimum of saccadic velocities 
were 9.029 and 0.013 px/ms, and those of saccadic amplitudes 
were 775.7 and 4.123 px. The ranges of these metrics were divided 
into 9 equal intervals to create 9×9 categories. Figure 3 shows 
the number of fixations in each entry in the  9×9 category matrix 
when the subject felt difficulty in identifying a character and 
fixed his eyes on it, where each numeral in parentheses indicates 

Reward Penalty
t-step state TP TN FP FN
1-10   500 ≤ st ≤ 1400 0.25 1.50 -7.00  -0.25
11-22 1500 ≤ st ≤2600 0.25 1.00 -6.00  -0.50
23,24 2700 ≤st ≤2800 3.00 0.25 -6.00 -10.00

25 st = 2900 5.00 0.25 -6.00 -15.00

Table 2: Magnification factor values

TP and FN, the absolute values were small in the range of short 
fixation durations (Policy 1), while for FN, the absolute value 
was extremely high at St = 2,900 (Policy 2). 

Using these values and Eq. (1), Q-values were calculated. The 
number of iterations was 10,000; however, convergence was 
achieved after about 6,000 iterations. The threshold of Eq. (3) 
was 2,700 ms. This model had

Precision = 0.94 and Recall = 0.60. 		  (4)

Figure 3: Number of fixations in each entry

Figure 4: Threshold values in each entry.

Figure 5: Precision in each entry

Figure 6: Recall in each entry.
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the total number of fixations. The frequency of fixations caused 
by difficulty in character identification was extremely low in 
each entry. Fixations were concentrated around the diagonal 
of the category matrix, suggesting a high correlation between 
velocity and amplitude (correlation coefficient = 0.76). Hence, 
it appears that the use of either velocity or amplitude data was 
sufficient for prediction. However, since samples exist except 
for the diagonal and sample data will be large in the future, it is 
rational to use both data.   

Each Q-value was calculated in the (i, j)-th entry of the 
category matrix. Figures 4, 5, and 6 show the threshold Fix(i,j) and 
the precision and recall scores in the (i, j)-th entry, respectively. 
As shown in Figure 4, Fix(i,j) tended to be somewhat larger as 
the saccadic velocity and amplitude increased, although further 
verification is necessary because the number of samples was 
small and there was only one subject. Figures 5 and 6 suggest 
that the Q-values with indices improved precision so that 
the values were 1.0 in almost all entries but did not improve 
recall at such a level; indeed, the values were 1.0 in about half 
entries. To compare these results with those of the model in the 
previous subsection, the comprehensive precision and recall 
were calculated by weighing the values of each entry by the 
sample numbers: 

Precision = 0.96 and Recall = 0.68. 		  (5)
Comparison of Eqs. (4) with (5) seems to indicate that there 
might be little improvement, even in terms of precision. This 
was primarily due to the small sample size. Indeed, there was 
only one error, which gave rise to a poor precision score (0.75) 
for the (7, 6)-th entry. Changing the evaluation of rewards 
and penalties through all samples into that through samples of 
each entry would almost certainly make each precision of the 
entry 1.0; the recall scores will also be expected to improve. 
Moreover, it is expected that the larger the sampling number, 
the greater is the effect of these fine thresholds on the reduction 
of Errors 1 and 2.

Conclusions
This study developed a system to predict the occurrence of 

difficulty in character identification quickly and correctly from 
users’ gaze data during web browsing, aiming to realize an 
active web equipped with automatic magnification of characters. 
To enable rapid prediction, a state was defined as the elapsed 
time when the fixation duration enveloped incrementally. An 
algorithm to assess the occurrence of difficulty at each time 
step was created based on SARSA. Moreover, to minimize two 
types of prediction errors, the Q-values indexed by categorized 
saccadic velocities and amplitudes was calculated and a novel 
method was devised to evaluate rewards and penalties. An 
evaluation experiment demonstrated that this prediction method 
could be effective in reducing the two types of errors if the 
amount of sample data were increased. Future directions for this 
study include the following: First, the model must be validated by 
increasing the number of participants. Second, the development 
of predictions based on DQN learning is necessary to construct 
an active website capable of automatically magnifying 
characters, which would require handling a substantially large 
sample data. 
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