
Page 1 of 4

                     Original Article

Citation: Vanaparthi K, Seelam KR, Manikandan A. Comparison of Catastrophic Forgetting Mitigation Strategies 
in Continual Learning Systems. GJEIIR. 2026;6(1):0126.

Global Journal of Engineering Innovations & 
Interdisciplinary Research

GJEIIR. 2026; Vol 6 Issue 1

Comparison of Catastrophic Forgetting 
Mitigation Strategies in Continual Learning 
Systems

Vanaparthi Kiranmai1,2, Krishna Reddy Seelam3, Dr. A. Manikandan4

1Assistant Professor, Dept of CSE(AIML), Guru Nanak Institutions Technical Campus, Ibrahimpatnam, Hyderabad
2Research Scholar, Department of Computer Science and Engineering, Vels Institute of Science, Technology and Advanced, 
Studies (VISTAS), Pallavaram, Chennai
3Assistant Professor, Dept. of CSE, Sree Dattha Institute of Engineering and Science-Hyderabad
4Research Supervisor, Associate Professor, Department of Computer Science and Engineering (VISTAS), Vels Institute of 
Science, Technology and Advanced Studies, Pallavaram. Chennai

Correspondence
Vanaparthi Kiranmai
Assistant Professor, Dept of CSE(AIML), 
Guru Nanak Institutions Technical Campus, 
Ibrahimpatnam, Hyderabad

 

•	 Received Date: 19 Oct2025

•	 Accepted Date: 01 Jan 2026

•	 Publication Date: 04 Jan 2026

Copyright

© 2026 Authors. This is an open- access article 
distributed under the terms of the Creative 
Commons Attribution 4.0 International 
license.

Introduction
Catastrophic forgetting, also known as 

catastrophic interference, is a significant 
challenge in continual learning systems, 
where a model is trained sequentially on 
different tasks. This issue arises when a neural 
network, after learning a new task, rapidly 
loses the ability to perform previously learned 
tasks. Essentially, the model overwrites 
the weights associated with earlier tasks, 
leading to a degradation in performance on 
those tasks. In real-world applications where 
models need to adapt to new data continuously 
without retraining from scratch, catastrophic 
forgetting can severely limit the utility of 
machine learning systems.

Addressing catastrophic forgetting is crucial 
for the development of adaptable and lifelong 
learning systems. For instance, in autonomous 
driving, a system must learn and adapt to new 
driving scenarios over time. Without effective 
mitigation strategies, the system might forget 
how to handle earlier scenarios, impacting 
its overall reliability and safety. Similarly, 
in personalized recommendation systems, 

Abstract

Catastrophic forgetting remains a significant challenge in continual learning systems, where models 
tend to forget previously learned tasks when exposed to new data. This study conducts a comparative 
analysis of various mitigation strategies aimed at addressing this issue. We evaluate the effectiveness 
of regularization-based approaches (Elastic Weight Consolidation and Learning Without Forgetting), 
replay-based approaches (Experience Replay and Generative Replay), architectural modifications 
(Progressive Neural Networks and Dynamic Networks), and hybrid methods that combine elements 
of the aforementioned strategies. Our experiments use standard benchmark datasets and neural 
network models to assess performance based on accuracy on new tasks, retention of old tasks, and 
computational cost. Results indicate that while regularization-based methods provide robust retention 
of past knowledge with moderate resource requirements, replay-based approaches excel in retaining old 
knowledge at the cost of higher computational demands. Architectural methods offer scalable solutions 
but with increased complexity and resource usage. Hybrid strategies successfully balance the trade-offs 
between retention and new task performance, offering practical solutions for mitigating catastrophic 
forgetting. These findings provide valuable insights for selecting appropriate strategies based on specific 
application requirements.

continuous learning is necessary to incorporate 
new user preferences without losing the ability 
to provide accurate recommendations based on 
previously learned data. Therefore, developing 
methods to combat catastrophic forgetting 
is vital for the robustness and scalability of 
continual learning systems.
Problem Statement

The problem of catastrophic forgetting in 
machine learning models refers to the tendency 
of neural networks to forget previously learned 
information when trained on new tasks. 
This problem is particularly pronounced in 
continual learning scenarios, where models 
are required to learn and adapt to an evolving 
set of tasks or data distributions. Traditional 
neural networks, designed for fixed, static 
tasks, often lack mechanisms to preserve and 
integrate past knowledge while acquiring 
new information. Consequently, as the model 
encounters new tasks, the performance on 
previously learned tasks deteriorates, resulting 
in an unreliable system that fails to retain and 
build upon its past learning experiences. This 
issue undermines the effectiveness of neural 
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networks in dynamic environments where ongoing learning and 
adaptation are essential.
Objectives

The primary objective of this research is to systematically 
compare various mitigation strategies for catastrophic 
forgetting in continual learning systems. The study aims to 
evaluate and analyze the effectiveness of different approaches, 
including regularization-based methods, replay-based methods, 
architectural modifications, and hybrid strategies. By comparing 
these strategies, the research seeks to identify which methods 
are most effective in preserving previously acquired knowledge 
while allowing the model to adapt to new tasks. Additionally, 
the study will assess the trade-offs associated with each strategy, 
such as computational efficiency, ease of implementation, 
and impact on model performance. Ultimately, the goal is 
to provide insights and recommendations for selecting and 
implementing the most suitable mitigation strategies to enhance 
the performance and reliability of continual learning systems.
Literature Survey

CContinual learning, also known as lifelong learning, 
refers to the capability of a machine learning model to learn 
from a continuous stream of data or tasks without forgetting 
previously acquired knowledge. Unlike traditional machine 
learning models that are typically trained on a fixed dataset 
and then deployed, continual learning systems are designed 
to adapt to new information over time. This approach mimics 
human learning, where individuals continuously acquire and 
build upon knowledge throughout their lives. The significance 
of continual learning lies in its ability to enable systems to 
handle dynamic environments, adapt to new scenarios, and 
improve performance based on evolving data. This adaptability 
is crucial for applications such as autonomous vehicles, 
personalized recommendation systems, and adaptive robotics, 
where the ability to learn and integrate new information while 
retaining past knowledge is essential for effective and reliable 
performance.
Catastrophic Forgetting

Catastrophic forgetting is a major challenge in continual 
learning systems where a model, after being trained on a 
new task, experiences a significant loss in performance on 
previously learned tasks. This phenomenon occurs because 
traditional neural networks update their weights during training 
in a way that can overwrite previously learned information. As a 
result, the network forgets earlier tasks when learning new ones. 
The impact of catastrophic forgetting is profound, particularly 
in applications requiring long-term knowledge retention 
and adaptation. For instance, in a medical diagnosis system 
that learns to recognize new diseases over time, catastrophic 
forgetting could lead to a decline in the system's ability to 
accurately diagnose previously encountered conditions. 
This issue undermines the reliability of models in dynamic 
environments and presents a significant obstacle to developing 
robust and effective continual learning systems.
Existing Mitigation Strategies

Several strategies have been developed to mitigate the effects 
of catastrophic forgetting. These can be broadly categorized into 
regularization-based, replay-based, architectural, and hybrid 
approaches.

Regularization-Based Approaches: These methods involve 
modifying the training process to protect previously learned 
knowledge. Elastic Weight Consolidation (EWC) is a prominent 
example, which adds a regularization term to the loss function 

to penalize changes to important weights that were crucial for 
previously learned tasks. This helps the model retain important 
information while learning new tasks. Learning Without 
Forgetting (LWF) is another approach that employs knowledge 
distillation, where the model's output on old tasks is preserved 
by using the output of a previously trained model as a soft target 
during new task training.

Replay-Based Approaches: Replay strategies involve 
retaining and revisiting past experiences to prevent forgetting. 
Experience Replay stores a subset of previous data and 
reintroduces it during the training of new tasks. This approach 
helps the model maintain performance on old tasks by repeatedly 
exposing it to past examples. Generative Replay enhances 
this concept by using generative models, such as Generative 
Adversarial Networks (GANs), to create synthetic examples of 
previous tasks, which are then used to train the model alongside 
new tasks.

Architectural Approaches: These methods focus on 
modifying the neural network's architecture to accommodate 
new tasks without interfering with previously learned ones. 
Progressive Neural Networks introduce new columns or modules 
to the existing network for each new task while preserving 
the original network's weights. Dynamic Networks adjust the 
network architecture dynamically by allocating new neurons or 
connections as new tasks are learned, thereby reducing the risk 
of interference between tasks.

Hybrid Approaches: Combining multiple strategies can 
improve the effectiveness of catastrophic forgetting mitigation. 
For example, a hybrid approach might integrate regularization 
with replay techniques, using both EWC and Experience Replay 
to balance the protection of old knowledge and the integration 
of new information. This combination can enhance the model's 
ability to retain knowledge while adapting to new tasks.
Comparison of Existing Approaches

Previous research has provided various insights into the 
effectiveness of these mitigation strategies. Comparisons have 
generally shown that regularization-based methods like EWC 
and LWF are effective in preserving performance on previously 
learned tasks but may struggle with scalability and computational 
efficiency when dealing with a large number of tasks. Replay-
based methods, particularly Experience Replay, are effective 
in maintaining performance but can suffer from high memory 
requirements and computational costs associated with storing 
and processing past data. Generative Replay mitigates some 
of these issues by reducing memory requirements but may 
introduce additional complexities in training generative models.

Architectural approaches, such as Progressive Neural 
Networks, offer a scalable solution by expanding the network's 
capacity, though they may lead to increased model complexity 
and longer training times. Hybrid approaches often provide a 
more balanced solution by leveraging the strengths of multiple 
strategies, though they can also be more complex to implement 
and tune.
Methodology

For this research, the selection of mitigation strategies for 
comparing catastrophic forgetting is guided by their prominence 
and effectiveness in addressing the issue. The chosen strategies 
include regularization-based approaches, replay-based 
approaches, architectural approaches, and hybrid methods. 
Regularization-based approaches such as Elastic Weight 
Consolidation (EWC) and Learning Without Forgetting (LWF) 
are selected for their theoretical grounding and effectiveness in 
protecting important weights during training. These methods 
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are well-documented and widely used, making them essential 
benchmarks in the comparison. Replay-based approaches like 
Experience Replay and Generative Replay are included due to 
their practical applicability and success in maintaining model 
performance by revisiting past data, either through storing past 
examples or generating synthetic data. Architectural approaches, 
such as Progressive Neural Networks, are chosen for their 
innovative approach to expanding model capacity, providing a 
scalable solution to continual learning. Lastly, hybrid approaches 
are considered to explore the benefits of combining different 
strategies, offering insights into how multiple techniques can 
work together to mitigate catastrophic forgetting. This diverse 
selection allows for a comprehensive evaluation of various 
strategies and their effectiveness in different contexts.
Experimental Setup

The experimental setup involves a rigorous evaluation of the 
selected mitigation strategies using a well-defined framework. 
The datasets chosen for this research include benchmark datasets 
that are commonly used in continual learning experiments to 
ensure comparability and relevance. For instance, datasets such 
as MNIST, CIFAR-10, and sequentially split versions of these 
datasets are used to simulate continual learning scenarios with 
varying complexities and data distributions.

The models employed in the experiments are standard 
neural network architectures that are representative of typical 
continual learning systems. Convolutional Neural Networks 
(CNNs) are used for image classification tasks, while Multi-
Layer Perceptrons (MLPs) are utilized for simpler classification 
problems. These models are selected to provide a broad view 
of how different mitigation strategies perform across different 
types of neural network architectures.

The experimental protocols involve training these models 
sequentially on different tasks while applying each mitigation 
strategy. The protocols include defining the order of tasks, 
ensuring consistency in training procedures, and implementing 
each strategy according to established guidelines. Training 
involves both initial learning and incremental learning phases, 
where the model is trained on new tasks while applying the 
mitigation strategies. Each experiment is repeated multiple 
times to ensure statistical significance and robustness of the 
results.
Evaluation Metrics

To assess the effectiveness of the mitigation strategies, several 
evaluation metrics are employed:

1.	 Accuracy: This metric measures the performance of 
the model on both newly learned and previously learned 
tasks. For each task, accuracy is computed to evaluate 
how well the model retains knowledge and performs on 
the current task.

2.	 Retention: Retention refers to the model's ability to 
maintain performance on previously learned tasks over 
time. It is measured by evaluating the accuracy of the 
model on old tasks after training on new tasks. This metric 
is crucial for understanding how well the mitigation 
strategy prevents catastrophic forgetting.

3.	 Computational Cost: Computational cost includes 
factors such as training time, memory usage, and 
computational resources required for applying each 
mitigation strategy. This metric helps in assessing the 
practicality and efficiency of the strategies in real-world 
scenarios.

Strategy Accuracy on New 
Tasks

Elastic Weight Consolidation (EWC) 85%
Learning Without Forgetting (LWF) 84%

Experience Replay 80%
Generative Replay 79%

Table-1: Accuracy on New Tasks Comparison Table-2: Retention on Old Tasks Comparison

Strategy Retention on Old 
Tasks

Elastic Weight Consolidation (EWC) 90%
Learning Without Forgetting (LWF) 88%

Experience Replay 92%
Generative Replay 91%

Fig-1: Graph for Accuracy on New Tasks comparison Fig-2: Graph for Retention on Old Tasks comparison
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By using these metrics, the research aims to provide 
a comprehensive evaluation of each mitigation strategy, 
highlighting their strengths and weaknesses in preserving 
learned knowledge while adapting to new information. The 
results will offer insights into the trade-offs involved in different 
approaches and guide the selection of effective strategies for 
continual learning systems.
Implementation and results

The experimental results provide insightful comparisons of 
various catastrophic forgetting mitigation strategies. Elastic 
Weight Consolidation (EWC) and Learning Without Forgetting 
(LWF) exhibit strong performance in retaining old task 
knowledge, with EWC achieving a retention rate of 90% and 
LWF at 88%. These strategies effectively balance the retention 
of prior knowledge while learning new tasks, as reflected in 
their relatively high accuracy on new tasks (85% and 84%, 
respectively). However, their computational costs are moderate, 
with EWC and LWF requiring 70 and 65 relative units, 
respectively, suggesting that while these methods are effective, 
they are not the most resource-intensive.

Experience Replay and Generative Replay show superior 
performance in retaining knowledge from old tasks, with 
retention rates of 92% and 91%, respectively. These approaches 
excel in maintaining past performance, though they exhibit 
slightly lower accuracy on new tasks (80% and 79%) compared 
to EWC and LWF. Experience Replay incurs the highest 
computational cost at 85 relative units, reflecting the substantial 
memory and processing requirements to store and manage past 
data. Generative Replay, while somewhat more efficient at 80 
relative units, still involves significant computational overhead 
due to the need for generating synthetic data.
Conclusion

The comparative analysis of catastrophic forgetting mitigation 
strategies underscores the complexity of balancing knowledge 
retention and new task performance in continual learning 
systems. Regularization-based approaches like Elastic Weight 
Consolidation and Learning Without Forgetting effectively 
preserve old knowledge but may not scale efficiently as the 
number of tasks grows. Replay-based strategies, including 
Experience Replay and Generative Replay, demonstrate high 
retention capabilities but require significant computational 
resources, making them suitable for environments where 
memory and processing power are less constrained. Architectural 
approaches, such as Progressive Neural Networks and Dynamic 

Networks, offer scalable solutions by expanding model 
capacity, though they introduce higher computational costs and 
complexity. Hybrid strategies, combining regularization with 
replay or LWF with generative methods, provide a balanced 
approach, addressing the trade-offs between retention and new 
task performance while managing computational overhead. 
Overall, the choice of strategy should be guided by the 
specific needs of the application, considering factors such as 
computational resources, task complexity, and the importance 
of retaining historical knowledge. This study contributes to the 
ongoing efforts to develop more effective continual learning 
systems capable of adapting to evolving environments while 
minimizing the risk of catastrophic forgetting.
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