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Introduction
Pneumonia has developed as a killer 

disease in this present era. The mortality 
rate is constantly on the rise. It is mostly 
faced in the under-5 group and above 65 
years. This is why early detection is crucial 
to reduce the mortality rate. Traditional 
imitation learning approaches rely greatly 
on COVID-19 pneumonia datasets. Such 
datasets may bring about dataset bias. Hence, 
although these models can be really good at 
diagnosing COVID-19-related pneumonia, 
they have a poor generalization to other types 
of pneumonia, thus limited utility outside 
the scope of COVID-19 cases. Traditional 
imitation learning relies heavily on CNNs 
and mainly on transfer learning. Although 
useful for the recognition of pneumonia, they 
find it challenging to correctly diagnose and 
locate, more so in complex diseases.Also, 
it lacks complex techniques such as real-
time detection and monitoring, Inability to 
detect early-stage pneumonia in which these 
methods will continue to drive research 
towards developing more accurate. Our 
approach is to detect pneumonia based on 

Abstract

Pneumonia continues to be one of the main causes of death among children below five and the elderly 
population above the age of 65 years. According to the minister of state in the Ministry of Health and 
Family Welfare, Dr. Bharati Pravin Pawar, at least 687 children aged 1-12 months and 301 chil-dren 
aged 1-5 years lost their lives due to pneumonia as part of the total number of deaths the disease caused 
in 2022-23. The high death rate is largely prevalent in South Asia and Sub-Saharan Africa. Pneumonia 
also remains among the top causes of deaths even in the most prosperous countries, such as the United 
States, falling within the ten leading causes. Early diagnosis does a lot to help reduce fatalities. This 
paper addresses this problem by showing research work that is based on the application of CNN models 
for detecting pneumonia from chest X-ray images.A number of CNN architectures, including VGG16, 
ResNet50, and DenseNet121, were trained and fine-tuned with varying parameters, hyperparameters, 
and counts of the convolutional layers. Transfer learning has drastically increased model accuracy 
while reducing the time taken to train. Results In relation to the efficient use of deep learning in medical 
image processing, the study underscores the effectiveness of transfer learning in CNNs with minimal 
label data, particularly in conditions. The algorithms were able to accurately classify the X-ray images 
into the classes of pneumonia and non-pneumonia. This approach further elaborates on the fact that 
CNNs, when utilized together with transfer learning, may be suitably applied for the early and timely 
detection of pneumonia, eventually minimizing infant mortality rates all over the world

the trained data through cnn, transfer learning 
and ensemble methods so as to further enhance 
the accuracy. In this paper, We have trained 
our presentations on a broad range of the ct-
scan image dataset containing both pneumonia 
and normal to classify. It is used so that our 
deep learning method outperforms imitation 
find on systems. With regard to accuracy and 
durability, our access introduces real-time 
detection and monitoring using a web frame-
work. The proposed system not only improves 
the performance of detection. But it also gives 
the framework for Pneumonia detection using 
multiple deep learning algorithms further 
accompanied by a deployment scheme..
Literature Survey

Deep learning algorithms have replaced more 
conventional image processing approaches in 
the literature on the use of medical imaging to 
detect pneumonia. Early research frequently 
employed simple methods, like manually 
designed feature extraction and traditional 
machine learning techniques, such as Support 
Vector Machines (SVM) and k-Nearest 
Neighbours (k-NN) (Armato et al., 2011). These 
techniques, however, were less successful 
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in identifying intricate patterns in medical images and had 
limitations in their capacity to generalise across other datasets.
[1]Convolutional neural networks (CNNs) changed the field of 
medical image analysis by allowing CT scans to automatically 
extract features. Studies by Litjens et al. (2017) and Wang et al. 
(2017) showed that CNNs dramatically improved the detection 
of lung abnormalities, such as pneumonia, outperforming 
conventional approaches. With this development, deep learning 
took centre stage in the field of medical picture processing.[2]
Transfer learning has emerged as a critical technique in medical 
imaging tasks in recent years, particularly when big annotated 
datasets are unavailable. With little to no fine-tuning, pre-trained 
models like VGG16, ResNet-50, and DenseNet-121 that were 
first trained on big datasets like ImageNet have been effectively 
used for pneumonia detection tasks (Kermany et al., 2018; 
Rajpurkar et al., 2017). These models significantly reduce the 
need for vast amounts of training data by utilising the generic 
knowledge gained from wide-scale picture categorisation and 
tailoring it to particular applications like medical diagnosis.[3]
The study also demonstrates how training methods have been 
enhanced to enhance model performance and generalisation. 
Examples of these techniques include data augmentation and 
fine-tuning tactics. According to Yang et al. (2021), these tactics 
improve deep learning models' performance in real-world 
clinical settings and increase their dependability for pneumonia 
early detection[4]..
Methodology

It is difficult to detect pneumonia from computed tomography 
(CT) scans. Hence, it demands the precise and efficient 
techniques or tools in a disease diagnosis process. This work 
proposes a methodology based on pre-trained Convolutional 
Neural Networks (CNN) with data augmentation and ensemble 
learning.Other data augmentation techniques used include 
rotation, flipping, zooming, and adding Gaussian noise for 
better diversity and to avoid overfitting. Three pre-trained CNN 
models, VGG16, DenseNet121, and ResNet50 were fine-tuned 
for the task of pneumonia detection, allowing them to adapt to a 
specific task while preserving learned features. Transfer learning 
enables the models to draw knowledge from pre-trained weights 
and free the initial layers so that the learned features are kept.
The batch size was set at 32 with the Adam optimizer being 
utilized in combination with the binary cross-entropy loss to 
train the models for 10 epochs. Ensemble learning benefits from 
the model averaging and weighted voting that happens, thereby 
allowing it to arrive at improvements through the elicitation of 
strengths based on various individual models' predictions. This 
method allows the strengths of different models' predictions 
to be combined towards better elicitation of improvement in 
performance.For smooth deployment at the clinical level, it 
developed a Flask-based web framework. The front end was 
made friendly through the help of HTML and CSS and back-
end JavaScript with the usage of Python and TensorFlow. It 
implemented an API endpoint with secure upload and an image 
prediction that enabled electronic health records integration.

This method therefore favors proper and efficient detection of 
pneumonia, thus helping clinicians at the right time in diagnosing 
and treating patients. The study applies developments in deep 
learning and providesaveryimportanttoolforclinicians. The 
deep learning techniques have completely revamped the field 
of medical image analysis to do pneumonia detection very 
accurately. The method thus was very useful in pointing out 

the role of transfer learning, data augmentation, and ensemble 
methods. Further research will lie in the collection of larger 
datasets, exploration of other pre-trained models, real-time 
detection applications, and considering various applications 
within the healthcare domain.This methodology presents 
an accurate and efficient pneumonia-detecting tool, offering 
faster and better clinical decision-making for patient care, 
through the advantages of deep learning. Results The study, 
hence, shows that the pre-trained CNN models could be used 
in combination with the ensemble learning properly to improve 
pneumonia detection from CT scan images, therefore leading 
to greater accuracy and speed in diagnosis.With the use of such 
methodology, the detection systems of pneumonia significantly 
impact healthcare. Improved diagnosis accuracy and speed 
through such system methodologies turn out to be really an 
important milestone in this healthcare field. Patient outcomes are 
improved by initiating treatment at a timely point for enhanced 
morbidity and mortality reduction. Hence, implementation of 
such methodology will have significant impacts on patient care 
into the clinical workflows.

Convolutional Neural Networks (CNNs)
Convolutional neural networks are deep learning models 

inspired from the human visual cortex and were primarily 
designed for the analysis of images and video. CNNs 
automatically extract features from raw data through 
convolutional layers, activation functions, pooling layers, 
and fully connected layers. There are several applications in 
CNNs, mainly involving image classification, object detection, 
segmentation, face recognition, and generating images. With the 
added benefits of automatic extraction of features, robustness 
to variations in images, and significant accuracy, CNNs fuel 
innovation in autonomous car industries, medical imaging 
devices, and even surveillance mechanisms.

VGG16 
VGG16 is one widely used pre-trained CNN proposed by 

the Visual Geometry Group at Oxford University. It won the 
ILSVRC in the year 2014. It has 16 layers, with some layers for 
convolution and max-pooling. Since it is simple enough, it can 
be fine-tuned for other tasks very easily. VGG16 uses three fully 
connected layers to improve image categorization performance. 
The main advantage of pre-training increases the likelihood of 
speedy adaptation to other tasks.



Page 3 of 5

S Swetha & syed Muzamil Hussain .  Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(5):096

GJEIIR. 2025; Vol 5 Issue 5

DenseNet121
One of the pre-trained CNN models is DenseNet121. It 

was proposed in 2017 and claimed ImageNet ILSVRC 2016. 
A dense connectivity pattern is presented, with each layer 
connected to every other layer. This model has 121 layers that 
apply batch normalization and ReLU activation. Its architecture 
decreases the amount of parameters so that computation is much 
more effective. DenseNet121 is perfectly performing in image 
classification tasks. Weights of this model are already pre-
trained and can then be further optimized.

Ensemble Methods
Ensemble methods combine multiple models in order to 

improve the generalization performance. Applied techniques 
involve model averaging, weighted voting, and stacking. 
Applying ensemble methods reduces overfitting and increases 
robustness. They handle diverse data very well. Model averaging 
combines the predictions from multiple models. Weighted 
voting assigns weights to the predictions of each model. The 
ensemble methods improve accuracy and reduce variance. 

ResNet50
ResNet50 is the pre-trained CNN model of Microsoft 

Research, developed in 2015, which won ImageNet ILSVRC 
2015. It supports residual connections to aid optimization 
without overfitting. The ResNet50 network incorporates 50 
layers together with batch normalization and ReLU activation. 
Its structure allows simple optimization to high performance. 
ResNet50 has been found to have very strong feature extraction 
abilities, due to the residual connections. Its pre-trained weights 
could be fine-tuned.

Transfer Learning
Transfer learning utilizes pre-trained models to transfer 

knowledge from one activity to another. It reduces time for 
training but boosts performance. Transfer learning works by 
fine-tuning the already trained models for new datasets. This 
method exploits the idea of similarity between tasks, enabling 
fast adaptation. Transfer learning avoids overfitting but applies 
less amount of data. It also allows for the creation of accurate 
models. Transfer learning has revolutionized deep learning.

 Model evaluation metrics
We have metrics for model evaluation in our toolkit in order to 

evaluate the performance of the machine learning model. They 
allow us to quantify how good a model performs on specific 
tasks and possibly reveal insights into its accuracy, reliability, 
and readiness for deployment. One might argue that the choice 
of metrics depends very significantly on the type of problem 
being solved-classification, regression, clustering, etc. Such 
choices will also be driven by the priorities of the application-
for example, minimizing false positives vs minimizing false 
negatives.

Accuracy: The proportion of correctly classified samples to 
the total number of samples. 

Accuracy = Precision: ( TP + TN )/ ( TP + TN + FP + FN )

Precision:The ratio of actual positive results to all expected 
positive results. It calculates the frequency of accuracy for a 
positive forecast. 

Precision = TP /( TP + FP )

Recall:The ratio of genuine positives to the total number of 
good outcomes. It counts the number of real positives that are 
accurately identified. 

Recall = TP/ ( TP + FN )
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cons of the model in the field. This optimized approach reduces 
computations that may be required to build from scratch but, at 
the same time, enhances the accuracy in diagnostics. Continued 
research in these models is bound to be critical in improving 
such early diagnoses and patient outcomes for pneumonia as 
medical imaging technologies advance..
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Results
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