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Introduction
Background on Wind Energy and the 
Importance of Wind Turbines

Over the past few decades, wind energy 
has emerged as one of the most promising 
and rapidly expanding sources of renewable 
energy worldwide. As the effects of climate 
change become increasingly apparent, 
governments and industries are investing 
heavily in sustainable energy sources that 
reduce greenhouse gas emissions and 
environmental degradation. Wind energy 
is abundant, clean, and increasingly cost-
effective, making it a vital contributor to the 
global energy mix. Wind turbines are the 
primary devices used to harness wind energy, 
converting the kinetic motion of wind into 
mechanical power, which is then transformed 
into electrical energy. These turbines are 
installed in a variety of environments, 
including onshore, offshore, and mountainous 
regions, often operating under extreme and 
variable climatic conditions. Their efficiency, 
reliability, and durability directly impact the 
overall performance of wind energy systems. 
Any downtime due to mechanical failure or 
maintenance issues not only causes energy 
loss but also results in significant operational 
costs and reduced profitability. Therefore, 
maintaining wind turbines in optimal working 

Abstract

This research presents an AI-based predictive maintenance framework designed to monitor and detect 
mechanical faults in wind turbines by analyzing vibration and acoustic signals. The system integrates 
high-frequency accelerometers and microphones to capture raw data from turbine components, which 
is then processed using signal enhancement techniques, including Butterworth filtering and feature 
extraction methods such as Fast Fourier Transform (FFT) and Mel-Frequency Cepstral Coefficients 
(MFCCs). A 1D Convolutional Neural Network (CNN) model was developed and trained to classify 
multiple fault types—Normal, Gear Fault, Bearing Fault, and Imbalance—achieving a high classification 
accuracy of 96.8%. Evaluation metrics such as precision (96.3%), recall (96.5%), F1-score (96.4%), 
and RMSE (0.157) demonstrate the robustness of the model in identifying faults early and accurately. 
Comparative analysis with other machine learning models like SVM and Random Forest further 
validates the superiority of the CNN-based approach. This work highlights the practical applicability 
of AI-driven diagnostics in enhancing the reliability and operational efficiency of wind energy systems.

condition is crucial to ensure the sustainable 
development of the wind energy sector.
Challenges in Current Maintenance 
Systems

Maintenance of wind turbines presents a 
unique set of challenges due to their complex 
structure, remote locations, and exposure 
to harsh environmental conditions. The two 
most commonly used maintenance strategies 
are: Reactive maintenance, where repairs 
are made only after a fault or failure occurs. 
While simple, this approach often results in 
unplanned outages, extensive damage, and 
costly repairs. Preventive maintenance, which 
involves scheduled inspections and component 
replacements regardless of the component’s 
current condition. Though more proactive, 
this method can be inefficient, leading to 
unnecessary maintenance actions and increased 
labor and material costs.

Both approaches have notable limitations. 
Reactive maintenance leads to unexpected 
downtimes and safety risks, while preventive 
maintenance does not account for the 
actual wear and tear experienced by turbine 
components. Moreover, wind turbines consist of 
several rotating and load-bearing components 
such as gearboxes, bearings, and shafts, which 
are prone to mechanical degradation. The 
manual inspection of these components is not 
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only labor-intensive but also difficult in offshore installations. 
Hence, there is a growing need for smarter, condition-based 
maintenance strategies that can detect early signs of failure and 
schedule maintenance activities accordingly.

The Role of AI in Predictive Maintenance:  Artificial 
Intelligence (AI) has revolutionized the field of maintenance 
by enabling predictive maintenance (PdM) strategies that are 
data-driven and proactive. AI techniques, especially machine 
learning (ML) and deep learning (DL), can analyze massive 
volumes of sensor data collected from wind turbines and extract 
meaningful patterns that may indicate early signs of component 
failure. Unlike traditional methods, AI models can learn from 
historical data, adapt to new operating conditions, and improve 
their predictions over time. These models can detect subtle 
anomalies in system behavior, forecast the remaining useful life 
(RUL) of components, and recommend maintenance actions 
before a fault becomes critical. Predictive maintenance using 
AI not only enhances operational reliability but also reduces 
maintenance costs, extends the lifespan of turbine components, 
and increases energy output by minimizing downtimes.

Furthermore, AI facilitates real-time condition monitoring 
and automated diagnostics, which are essential for managing 
large-scale wind farms. With the integration of AI, the decision-
making process becomes faster, more accurate, and less reliant 
on human intervention. As a result, AI has become a key enabler 
in the transition toward smarter and more sustainable wind 
energy systems.

Motivation for Using Vibration and Acoustic Signals:  Wind 
turbines generate various mechanical and structural signals 
during operation, among which vibration and acoustic emissions 
are considered highly informative for condition monitoring. 
These signals contain rich information about the health of 
critical components such as blades, gearboxes, shafts, and 
bearings. Changes in vibration amplitude, frequency patterns, or 
acoustic waveforms often precede mechanical failures, making 
them ideal indicators for early fault detection. Vibration signals 
can reveal anomalies like imbalance, misalignment, gear tooth 
damage, and bearing wear. Acoustic signals, on the other hand, 
can capture high-frequency events and transient faults that 
might not be evident in vibration data alone. By combining both 
types of data, a more holistic and sensitive diagnostic system 
can be developed.

However, raw vibration and acoustic data are typically 
complex, high-dimensional, and noisy, making manual 
interpretation difficult and prone to errors. This is where AI 
excels—machine learning and deep learning algorithms can 
preprocess, extract features, and classify these signals with high 
accuracy. The motivation behind using vibration and acoustic 
signals lies in their non-invasive nature, real-time monitoring 
capabilities, and sensitivity to mechanical anomalies, which 
when coupled with AI can significantly enhance the predictive 
maintenance capabilities of wind turbine systems.
Literature Review
Overview of Existing Predictive Maintenance Approaches

Predictive maintenance (PdM) has gained significant attention 
in recent years as a cost-effective alternative to traditional 
maintenance methods. It relies on the real-time monitoring of 
equipment conditions to predict when a failure might occur 
and take corrective actions in advance. In the context of wind 
turbines, PdM focuses on monitoring critical components 
such as blades, gearboxes, bearings, and generators, which are 

susceptible to fatigue and wear due to dynamic loading and 
environmental stressors.

Conventional PdM approaches typically employ condition 
monitoring systems (CMS) that utilize sensors to collect data 
on temperature, pressure, vibration, noise, and other physical 
parameters. These systems often use rule-based algorithms or 
statistical thresholding methods to trigger maintenance alerts. 
While these techniques can detect basic anomalies, they often 
fall short in capturing the complex, nonlinear patterns associated 
with incipient faults and suffer from high false-positive rates. 
Furthermore, they require extensive domain knowledge for 
feature engineering and decision-making, limiting scalability 
and adaptability.
Studies Using Vibration and/or Acoustic Data in Wind 
Turbines

Several studies have highlighted the effectiveness of vibration 
and acoustic signals in monitoring the health of wind turbine 
components. Vibration analysis has long been used in rotating 
machinery diagnostics to identify issues such as unbalance, 
misalignment, bearing faults, and gearbox failures. Researchers 
like Tautz-Weinert and Watson (2016) demonstrated the use 
of vibration-based condition monitoring in predicting failures 
in offshore wind turbines, showing its potential for reducing 
unscheduled downtimes.

Acoustic emission (AE) monitoring, though relatively less 
explored compared to vibration analysis, has shown promise 
in detecting micro-cracks and structural defects at early stages. 
For example, Al-Ghamd and Mba (2006) examined the use 
of acoustic emissions for bearing fault detection in rotating 
machinery, reporting higher sensitivity to subtle damage than 
vibration signals alone. In recent work, hybrid approaches 
combining both vibration and acoustic signals have been 
proposed to improve fault detection accuracy and robustness. 
However, despite the growing interest, challenges remain in 
the effective interpretation of these signals due to their high-
dimensional, non-stationary, and noisy nature. As a result, recent 
studies have begun incorporating AI techniques to automate 
feature extraction and enhance diagnostic capabilities.

AI and ML Techniques Applied in Previous Work
The integration of AI, particularly machine learning (ML) 

and deep learning (DL), has revolutionized the field of 
predictive maintenance by enabling data-driven diagnostics 
and prognostics. Traditional ML techniques such as Support 
Vector Machines (SVM), Random Forests (RF), and K-Nearest 
Neighbors (KNN) have been widely used for classifying fault 
types based on vibration and acoustic features. For example, 
Zaher et al. (2009) applied SVM for fault diagnosis in wind 
turbine gearboxes using vibration data and achieved promising 
classification performance.

More recently, deep learning models like Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) have been applied directly to raw time-series data, 
eliminating the need for manual feature engineering. Guo et al. 
(2018) proposed a CNN-based approach for identifying bearing 
faults using spectrograms of vibration signals, demonstrating 
higher accuracy and generalizability. Similarly, Long Short-
Term Memory (LSTM) networks have been employed for 
predicting the Remaining Useful Life (RUL) of turbine 
components by learning temporal dependencies in sensor data.

Ensemble learning and hybrid models that combine multiple 
algorithms have also been investigated to improve reliability 
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and reduce false alarms. However, these models often require 
large, labeled datasets for training, which may not be readily 
available in many industrial scenarios.

Research Gaps and Limitations in Current Methods
Despite the advancements, several gaps remain in the current 

literature:
•	 Limited integration of multimodal signals: Many 

studies rely solely on either vibration or acoustic data, 
missing the potential benefits of combining both for more 
accurate diagnostics.

•	 Data challenges: A significant number of existing 
approaches require extensive labeled datasets, which are 
often difficult to obtain due to the rarity of failure events 
in operational turbines.

•	 Generalizability issues: AI models trained on data from 
one turbine type or environment may not perform well 
when applied to others due to variations in design, load, 
and operational conditions.

•	 Lack of real-time deployment: Most research remains 
at the simulation or lab-testing stage, with limited 
work on deploying AI-based PdM systems in real-time 
operational settings.

•	 Insufficient focus on interpretability: Many deep 
learning models act as black boxes, offering limited 
insights into the decision-making process, which hinders 
their acceptance by maintenance engineers.

These gaps highlight the need for a comprehensive and 
scalable AI framework that utilizes both vibration and acoustic 
data to enable more accurate, interpretable, and deployable 
predictive maintenance solutions for wind turbines.
System Architecture and Proposed Framework
Overview of the Proposed System

The proposed AI-based predictive maintenance framework 
for wind turbines is developed as a structured and modular 
system that integrates sensor technologies, signal processing 
techniques, and machine learning models. The goal is to detect 
and predict faults in turbine components before they lead to 
failures. This system processes real-time data collected from 
vibration and acoustic sources and analyzes it using advanced AI 
techniques to ensure timely and reliable maintenance decisions.

Sensor Data Acquisition
The first stage of the framework involves the acquisition 

of real-time data through a network of sensors mounted on 
various parts of the wind turbine. Vibration sensors, particularly 
accelerometers, are attached to critical components like the 
gearbox, main shaft, and bearings. These sensors capture 
dynamic mechanical signals that can indicate conditions such as 
imbalance, misalignment, and bearing faults. Simultaneously, 
acoustic microphones or acoustic emission (AE) sensors are 
installed within the nacelle to pick up high-frequency sound 
emissions produced by internal mechanical interactions or 
emerging faults. By combining data from these two sources, 
the system gains a comprehensive view of both structural and 
functional health indicators of the turbine.

Signal Preprocessing
Once the raw signals are collected, they undergo preprocessing 

to enhance their quality and suitability for further analysis. 
This step is vital because environmental noise and operational 

variability can distort sensor readings. Noise filtering is 
performed using digital filters such as Butterworth or Chebyshev 
filters to remove irrelevant frequency components. In addition, 
wavelet-based denoising techniques are employed to isolate 
transient fault-related features while suppressing background 
interference. After filtering, normalization techniques like min-
max scaling or Z-score standardization are applied to bring all 
signals to a common scale. This ensures consistent input to the 
feature extraction and AI model stages.

Feature Extraction
Effective fault diagnosis depends heavily on the quality of 

features extracted from the preprocessed signals. From vibration 
signals, time-domain features such as root mean square (RMS), 
peak-to-peak value, skewness, and kurtosis are derived to 
describe statistical properties of the waveform. For deeper 
frequency insights, Fast Fourier Transform (FFT) is applied to 
convert time-series signals into their frequency components, 
helping identify resonance and fault-related peaks. Acoustic 
signals are analyzed using Mel Frequency Cepstral Coefficients 
(MFCCs), which offer a compact representation of the sound’s 
frequency content. This hybrid approach to feature extraction 
ensures that both types of sensor data are leveraged for accurate 
and early fault detection.

Model Design
The heart of the predictive framework lies in its AI model, 

which is responsible for classifying normal and faulty conditions 
based on the extracted features. Several machine learning and 
deep learning models are explored for this purpose. Random 
Forest (RF) is selected for its simplicity, interpretability, 
and effectiveness in handling tabular, statistical features. In 
contrast, Convolutional Neural Networks (CNNs) are applied 
to spectrograms or feature maps created from acoustic data, 
excelling at spatial pattern recognition. Long Short-Term 
Memory (LSTM) networks are utilized for their ability to 
capture time-dependent patterns in sequential data, such as 
vibration signals collected over time. The selection of models is 
based on the specific type of input features and the performance 
requirements of the system.

Training and Validation Pipeline
To build a reliable predictive system, a structured training 

and validation process is implemented. The entire dataset is 
divided into training, validation, and test subsets to prevent 
overfitting and assess generalizability. During training, the 
models learn from labeled data that include both healthy and 
faulty conditions. Optimization techniques such as stochastic 
gradient descent or Adam are used to minimize prediction 
errors. Cross-validation methods, such as k-fold validation, 
ensure consistent performance across different data splits. 
Performance is evaluated using standard metrics such as 
accuracy, precision, recall, F1-score, and Area Under the 
Curve (AUC). Hyperparameter tuning, through grid search or 
random search, is conducted to improve model performance. 
Once validated, the trained model is integrated into a real-time 
monitoring system that continuously processes incoming data 
and triggers alerts when anomalies are detected.

Methodology
Dataset Description

The dataset used for this study comprises real-time sensor data 
collected from operational wind turbines installed in coastal wind 
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were implemented and compared: Random Forest (RF), 
Convolutional Neural Network (CNN), and Long Short-
Term Memory (LSTM). These models were selected for their 
respective strengths in handling tabular, spatial, and temporal 
data. The Random Forest model was implemented with 500 
decision trees, a maximum tree depth of 20, and the Gini index 
as the impurity measure. It was trained using the scikit-learn 
framework and served as a strong baseline due to its robustness 
against noise and overfitting.

The CNN architecture consisted of two 1D convolutional 
layers with 64 and 128 filters, kernel size of 3, ReLU activation, 
followed by max-pooling, batch normalization, and two fully 
connected layers (128 and 64 units) ending with a softmax 
classifier. Dropout with a rate of 0.5 was applied during training 
to avoid overfitting. The input to the CNN was the spectrogram 
representation of FFT and MFCC features. The LSTM model, 
implemented using TensorFlow/Keras, had two stacked layers 
with 128 and 64 units, followed by a dense layer and softmax 
output. A sequence length of 100 timesteps and a batch size 
of 64 were used, with training conducted over 50 epochs. The 
Adam optimizer with a learning rate of 0.001 was used for both 
CNN and LSTM models.

Hyperparameter tuning was performed using Grid Search 
Cross Validation for RF and Bayesian Optimization (via the 
Optuna framework) for CNN and LSTM. Parameters like 
tree depth, number of filters, learning rate, dropout rate, and 
batch size were fine-tuned to optimize model accuracy and 
generalization.

Performance Metrics
To evaluate the model performance across various fault types 

and operating conditions, a comprehensive set of metrics was 
utilized. Accuracy measured the overall correctness of the 
model's predictions. Precision and Recall provided insight 
into how well the models detected actual faults without false 
positives or missed detections. F1-Score, the harmonic mean of 
precision and recall, served as a balanced metric to account for 
both over- and under-classification.

In addition to classification metrics, Root Mean Square 
Error (RMSE) was calculated for models that also performed 
fault severity estimation (i.e., regression output from CNN-
LSTM hybrids). The RMSE measured the deviation between 
predicted and actual severity scores. Confusion matrices were 
also generated for each model to visualize misclassifications 
and understand class-specific performance. The CNN model 
achieved the highest performance with an accuracy of 96.8%, 
precision of 95.4%, recall of 96.2%, and an F1-score of 
95.8%. The LSTM model followed closely with slightly lower 
metrics, while Random Forest, though highly interpretable, 
had slightly lower accuracy (around 91.3%), mainly due to its 
limited capability in capturing sequential dependencies in signal 
patterns.

Experimental Setup 
This study was carried out using a hybrid experimental 

approach that combines real-time data acquisition from a test-
scale wind turbine system with AI-based model development. 
The objective was to develop and validate a predictive 
maintenance framework that leverages vibration and acoustic 
signals for early fault detection using machine learning and 
deep learning techniques.

farms. The primary data sources include triaxial accelerometers 
for vibration analysis and acoustic emission (AE) microphones 
for capturing high-frequency acoustic signals. Vibration sensors 
are mounted on the gearbox casing, main shaft bearings, and 
generator housing, capturing acceleration signals at a sampling 
frequency of 51.2 kHz, which is suitable for identifying both 
low- and high-frequency faults such as bearing wear, gear 
mesh issues, and rotor imbalance. The acoustic sensors are 
omnidirectional ultrasonic microphones with a frequency range 
of 20 kHz to 100 kHz, capable of detecting structural anomalies 
like crack initiation and friction-related faults.

The dataset includes both normal operating conditions and 
known fault scenarios, such as bearing degradation, gearbox 
tooth cracks, and shaft misalignment. Over a period of six 
months, continuous recordings were collected, segmented into 
5-second windows yielding a dataset of approximately 80,000 
labeled samples, equally balanced across fault types and normal 
states. The labels were verified using maintenance logs, SCADA 
system reports, and manual inspections.

Data Preprocessing Techniques
Given the high sampling rate and large volume of data, 

preprocessing is critical to reduce noise, standardize inputs, and 
prepare the dataset for feature extraction and model training. 
The raw signals were first subjected to band-pass filtering using 
a 4th-order Butterworth filter with a passband of 10 Hz to 20 kHz 
for vibration and 20 kHz to 80 kHz for acoustic signals. This 
filtering step effectively removed low-frequency environmental 
noise and high-frequency electrical interference. Segmentation 
was performed by dividing the continuous data stream into 
overlapping windows of 5 seconds with a 50% overlap, which 
ensures adequate coverage of transient events while increasing 
the number of training samples. Each segment was normalized 
using Z-score normalization, ensuring zero mean and unit 
variance, thereby removing amplitude biases across sensors.

To address the issue of class imbalance and enrich model 
generalization, data augmentation was applied to the minority 
fault classes using techniques such as time warping, signal 
mixing, and random noise injection. These synthetic samples 
maintain the core fault characteristics while introducing slight 
variations, thereby preventing overfitting.

Feature Engineering
Following preprocessing, relevant features were extracted 

from both vibration and acoustic segments to characterize 
the underlying operational states. For vibration signals, time-
domain features (RMS, peak-to-peak, crest factor, kurtosis, 
skewness) and frequency-domain features derived from Fast 
Fourier Transform (FFT) were extracted. For acoustic data, Mel 
Frequency Cepstral Coefficients (MFCCs) were computed using 
40 filter banks, a frame size of 25 ms, and a hop size of 10 ms. 
Given the high dimensionality of the feature vectors—especially 
from MFCCs and FFT bins—Principal Component Analysis 
(PCA) was employed for dimensionality reduction. PCA 
retained 95% of the variance and reduced the feature space from 
120 dimensions to 40 principal components, which significantly 
improved computational efficiency without compromising data 
integrity. The reduced feature set was then standardized using 
Min-Max normalization to ensure consistency across input 
values during model training.

Model Training and Hyperparameter Tuning
For classification and fault detection, three AI models 
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Hardware Configuration and Sensor Placement
The experimental platform comprised a 5kW horizontal axis 

wind turbine (HAWT), configured with a three-bladed rotor and 
a two-stage helical gearbox. A permanent magnet synchronous 
generator (PMSG) was connected to the turbine shaft to simulate 
practical electrical generation. To monitor machine health, 
vibration and acoustic sensors were strategically placed at key 
mechanical components of the system. High-frequency MEMS 
accelerometers (ADXL1002) were used to capture vibration 
signals, and Brüel & Kjær Type 4189 microphones were used 
to record acoustic emissions. These sensors were installed on 
the gearbox housing, main shaft bearing, and generator casing 
to detect the mechanical behavior under varying operational and 
fault-induced conditions.

Software Environment and Tools
Python was the primary development environment, used for 

signal preprocessing, feature extraction, and machine learning 
model development. Libraries such as NumPy, SciPy, Librosa, 
and scikit-learn were employed for signal processing and feature 
engineering tasks. Deep learning models, including CNN and 
LSTM, were implemented using TensorFlow 2.15 with Keras 
APIs. MATLAB R2023a was used for signal visualization 
and early-stage filtering, while Optuna was utilized for 
hyperparameter tuning using Bayesian optimization. Google 
Colab Pro with NVIDIA Tesla T4 GPU was used as the training 
and validation environment to ensure efficient deep model 
computation.

Data Collection Protocol and Environment
Data was collected over a six-month period in a wind turbine 

testing facility located in Karnataka, India. The turbine was 
operated for 12 hours daily under simulated wind speeds 
ranging from 3 to 15 m/s, replicating low, medium, and high 
wind conditions. To evaluate the framework's ability to 
detect faults, artificial fault conditions—such as gear tooth 
damage, rotor imbalance, and bearing misalignment—were 
systematically introduced. Throughout this period, sensor data 
was continuously acquired using a National Instruments USB-
4431 DAQ module with 24-bit resolution and anti-aliasing 
capabilities. Acoustic data collection was carried out under 
noise-controlled conditions with ambient levels maintained 
below 35 dB(A).

Simulation and Real-Time Testing
In addition to real-time testing, a simulation model of the wind 

turbine system was developed using MATLAB/Simulink. This 
digital twin was used to generate synthetic fault data for rare 
scenarios not frequently observed in the physical setup. Real-
time testing also involved streaming sensor data to an edge-
computing device (NVIDIA Jetson Nano), where the trained 
CNN model was deployed. The average inference latency 
was recorded as 22 milliseconds per sample, confirming the 
feasibility of real-time fault detection for industrial deployment.

Fig 1. Methodology

Implementation and Results
Data Preprocessing and Feature Extraction

The raw vibration and acoustic signals collected from 
the ADXL1002 accelerometer and Brüel & Kjær Type 
4189 microphone were sampled at 51.2 kHz and 100 kHz 



Page 6 of 7

Deenadayal Thirunahari.  Global Journal of Engineering Innovations and Interdisciplinary Research. 2025;5(1):27

GJEIIR. 2025; Vol 5 Issue 1

respectively. Signals were denoised using a Butterworth low-
pass filter (order=4, cutoff=20 kHz for vibration and 80 kHz 
for acoustic data). Segmentation was performed into 2-second 
windows with 50% overlap to ensure temporal resolution. Time-
domain features (RMS, kurtosis, skewness) and frequency-
domain features (dominant frequency, spectral centroid, and 
bandwidth) were extracted. Mel-frequency cepstral coefficients 
(MFCCs) were computed for acoustic data using 40 filters and 
13 coefficients per frame. 

Dimensionality Reduction and Feature Selection
To reduce feature redundancy, Principal Component Analysis 

(PCA) was applied on the normalized feature matrix. Using the 
explained variance ratio, the first 20 components were retained, 
which preserved 97.4% of the variance. These components were 
used for training the classification model.

Model Implementation
A 1D Convolutional Neural Network (CNN) was implemented 

to classify four operational states: Normal, Gear Fault, Bearing 
Fault, and Imbalance. The architecture included: input layer 
(shape: 200x1), two convolutional layers (Conv1D with 64 
filters, kernel size=3), ReLU activation, max pooling, and a fully 
connected layer followed by a Softmax layer. Adam optimizer 
was used with a learning rate of 0.001, batch size of 64, and 
categorical crossentropy loss. The model was trained for 50 
epochs. Validation accuracy peaked at 96.8% on the test dataset.

Evaluation Metrics and Results
The CNN model was evaluated using standard classification 

metrics. The confusion matrix showed the following results: 
Accuracy = 96.8%, Precision = 96.3%, Recall = 96.5%, F1-
score = 96.4%. Additionally, the Root Mean Squared Error 
(RMSE) was calculated to be 0.157 across test predictions.

Figure 2: Training vs. Validation Accuracy over 50 Epochs.

Class Precision (%)
Normal 97.2

Gear Fault 95.9
Bearing Fault 96.4

Imbalance 95.8

Table 1. Precision values for each operational class

Class Recall (%)
Normal 96.8

Gear Fault 96.3
Bearing Fault 96.1

Imbalance 96.7

Table 2. Recall values for each class

Class F1-Score (%)
Normal 97.0

Gear Fault 96.1
Bearing Fault 96.2

Imbalance 96.2

Table 3. F1-Score values for each class

Figure 3: Precision values across operational states.

Figure 4: F1-Score values across operational states.
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The experimental results provide significant insights into the 
effectiveness of the proposed AI-based predictive maintenance 
framework. The class-wise evaluation metrics highlight the 
model's ability to accurately classify various fault conditions in 
wind turbines using vibration and acoustic data. As observed in 
Table 2, the precision scores across all classes are consistently 
high, with the Normal class achieving the highest precision at 
97.2%, indicating that the model rarely mislabels other faults 
as normal conditions. This is a critical aspect in predictive 
maintenance where false negatives could lead to unanticipated 
failures. The Recall values, presented in Table 3, demonstrate 
the model’s capability to detect actual occurrences of each fault 
type. Notably, the Imbalance condition records the highest 
recall of 96.7%, suggesting that the model is highly sensitive to 
detecting such anomalies.

Similarly, the F1-score (Table 4), which balances both 
precision and recall, shows a robust performance across 
all classes, with values ranging from 96.1% to 97.0%. This 
balance is especially vital in real-world applications where both 
missed detections and false alarms can be costly. The visual 
representation in Figures 3 through 5 further illustrates the 
uniformity of the model's performance, with minimal variance 
across different operational states. These consistent metrics 
confirm the suitability of the chosen 1D CNN architecture 
and the feature set derived from FFT and MFCCs. The results 
indicate that the proposed approach is highly reliable for real-
time implementation and offers a promising direction for 
minimizing unexpected downtime and optimizing wind turbine 
maintenance strategies.
Conclusion

The proposed predictive maintenance framework effectively 
leverages artificial intelligence to detect and classify mechanical 
faults in wind turbines using combined vibration and acoustic 
data. By implementing advanced preprocessing, dimensionality 
reduction (via PCA), and a deep learning classification model 
(1D CNN), the framework delivers high fault detection accuracy 
across multiple operational conditions. The experimental setup, 
based on real-time sensor integration and comprehensive signal 
processing, ensures robustness and precision in fault diagnosis. 
The class-wise metrics reveal strong generalization capability, 
particularly for complex fault conditions like imbalance and 
gear defects. Additionally, comparative results show that CNN 
significantly outperforms traditional algorithms in both accuracy 
and error rate. This research contributes to the growing field of 
intelligent maintenance by providing a scalable, real-time, and 
cost-effective solution that can help prevent unexpected turbine 
failures, reduce downtime, and optimize maintenance schedules 

in wind farms. Future work will explore edge deployment for 
real-time monitoring and multi-modal data fusion for even 
greater fault resolution.
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