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Introduction
Potential flow as referred to in current 

terminology is a classical topic. It's 
basic formulation goes back to the first 
formulations of fluid flow by Leonard Euler 
in 1752 [1]. It refers to a flow field with the 
velocity ѵ given by the negative gradient 
of a function, which is called the potential 
function φ :

	 v = −∇φ	 	 (1)

Euler dealt with three-dimensional flow 
real valued functions ɸ. The theory of flow 
described by equation (1) gained much higher 
importance, when dealing with flow in two 
dimensions and complex valued potential 
functions Ψ = φ + iψ [2,3]. The real part  φ 
of the complex potential Ψ is referred to 
as the real potential; the imaginary part ψ is 
called the streamfunction. The naming of ψ 
refers to its important property:  Its contour 
lines are streamlines of the flow field. It is this 
property what makes the complex potential 
so important and convenient for visualisation.

Most software and programs for flow-
net visualisation use particle tracing as 
tool for streamline visualisation [4], while 
the alternative method of streamfunction 
contouring is seldom applied. This is 
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unfortunate because using the streamfunction 
has two important advantages: (1) it is exact, 
while in particle tracing errors performed 
in each time step accumulate [5]; (2) if the 
streamfunction levels for contouring are 
chosen equidistantly the flow between adjacent 
streamlines is the same. The streamtubes 
are equal. The latter property can be utilized 
for visual flux balancing (see Figure 7 and 
description as an example). Particle tracing 
depends on the choice of starting points, which 
is usually done manually by the user. Thus it 
is not guaranteed that there is equal flow in 
streamtubes between streamlines.

However, there are problems in the 
straightforward application of this property. 
These are outlined here using the complex 
logarithm as example. Figure 1 depicts two 
visualisations of the complex logarithm Ψ = 
log(z) with the complex variable z = x + iy .

The left figure uses a black and white colour 
map for the real potential and white contour 
lines for the streamfunction. It has to be noted 
here that the streamline on the negative real 
axis is thicker than the others. The right figure 
uses the colour map for the streamfunction and 
contour lines for the real potential. It indicates 
much more clearly that there might be a 
problem with the streamfunction at the negative 
axis: values of ψ change from the lowest value 
(white colour) to the highest (black colour).
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The jump results from the definition of the complex logarithm:
                                                                          (2)

where (r,φ) are the polar coordinates in the complex plane. 
As the angle φ is not unique, the complex logarithm is in fact 
a multi-valued function. For all whole numbers n with ϕ + 
2πn the logarithm (2) maps to the same complex number. In 
computer languages the implemented log function is made 
single valued by choosing φ in the interval ] − π ,π ] , which 
is referred to as the principal value or principal branch of the 
logarithm [6]. Evidently the jump of the complex potential at 
the negative real axis is 2πi .

Despite the mentioned discontinuity the flow-nets in Figure 1 
are correct. However, the inconsistency becomes more serious 
visually, when two logarithms are added:

                                                                                                (3)

Such superposition is an important technique that is valid 
and extensively applied in potential flow. Figure 2 uses the 
same visualisation as outlined before for the function given 
by equation (3)

The flow-net on the left of Figure 2 has obviously two problems: 
(1) the thick white lines that extend from the locations of the 
logarithms to the left are not streamlines; (2) streamlines that 
reach the two thick lines from top and from bottom do not 
match. The right figure reveals changes of the streamfunction 
from lowest to highest values (analogous to what was observed 
in the right of Figure 1) exactly at the two mentioned lines. A 
method to overcome this problem is outlined here.
The importance of potential flow stems from its relation to 
complex analysis. Using equation (1) in the continuity equation 
∇ ⋅ v = 0 as law of volume conservation one obtains the Laplace 
equations ∇2φ = 0  and  ∇2ψ = 0 as well as the Cauchy-
Riemann Equations	

                                                                       (4)

The Cauchy-Riemann equations are fundamental in the 
field of complex analysis [2]. In the following we utilize the 
complex logarithm to exemplify the derived methodology. In 
fact in potential flow applications the logarithm is the one of 
most important functions, at it is used to describe a line sink or 
source:
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Figure 1. Flow-net visualizations of the Complex Logarithm

( ) ( )( )ilog z log re log r iϕ ϕ= = +

( ) ( ) ( )1 1
2 2

z log z i log z iΨ = − + +

            
x y y x
φ φ∂ ∂Ψ ∂ ∂Ψ
= = −

∂ ∂ ∂ ∂

Figure 2. Flow-net visualisations for the superposition of two complex logarithms
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This has consequences for the visualisation of complex 
functions, as will be demonstrated here for the identity

1 2 1 2( ) ( ) ( )log z log z log z z+ =               (7)
which is valid on the positive real axis. As an example we 
compare both sides of (7) this for log (-i):

       

( )

) 1(( ) ) (

(

1
2

1 31)
2 2

log i log i

log log i

π

π π π

− = − = −

− + = + =

                                                                          (8)

In order to find out, what that means for the visualization of 
complex potentials we will examine functions that include the 
complex logarithm. Lets start comparing the functions

( )
( ) [ ]

1 1 2

2 1 2

( ) ( )
( )( )

z log z z log z z
z log z z z z

Ψ = − + −
Ψ = − −                                                                                             (9)

                                                                                   
with z1= 1 /2 i  and z2= −1/2 i . For real values Ψ1 and Ψ2  

coincide. The resulting flow nets are depicted in Figure 3. The 
two figures on the left visualize Ψ1 , the figures on the right Ψ2 
. The upper figures use black and white colour maps for the 
real potential and white contour lines for the streamfunction. 
The graphics for Ψ1 and Ψ2 show the same flow pattern. 
However, all four visualisations have the above-mentioned 
problems at branch cuts: not matching streamlines in the two 
upper sub-figures and jumps from high to low values of the 
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where Q denotes the sink- and source-rate and z

0 its location 
in the complex plane. The logarithm also describes a line vortex:

                                                                        (6)

where Γ denotes the vertex circulation. For the vortex the 
branch cut appears in the real part of the complex potential, 
while the stream function does not show problems with the 
visualisation. In the following we restrict ourselves to examples, 
in which the coefficient of the logarithm is real valued as in 
equation (5).
Methods

Identities in the Complex Plane

Some identities that one is used to dealing with real 
numbers do not hold, when the number space is extended to 
the complex plane. 2z z=  for example does not hold for 

( ) ( )1. 1/  z log z log z= − = −  is not true at the negative real axis. The 
reason for this are the branch cuts. In all implementations of 
computational algebra the branch cut of the complex logarithm 
is located along the negative real axis, as demonstrated in 
Figure 1 using MATLAB® [7].

( ) 0log( )
2
Qz z z
π

Ψ = −

0( ) log( )
2
iz z z
π
Γ

Ψ = −

Figure 3. Branch cut shift for superposition of two logarithms with same coefficient

(5)
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Figure 4. Branch cut shift for superposition of logarithms with different coefficients

Figure 5. Branch cut shift for superposition of logarithms with different positions
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streamfunction in the two lower sub-figures. What is most 
important additionally: the branch cuts for Ψ1 and Ψ2 are 
not at the same positions. While they extend from their base 
position horizontally to the left for Ψ1 , they extend vertically to 
the outer domain edges for Ψ2.

In Figure 4 we use the same visualization for the superposition 
of the functions:

( )
( )

1 1 2

2
2 1 2

( ) ( )

( )( )

2z log z z log z z

z log z z z z

Ψ = − + −

 Ψ = − − 
               (10)

Lets also check the visualization if we change the position 
of the logarithms, i.e. if we take 1 ( )1 12z i= −  and 2 (1 )1

2z i= − in 
equation (9). The result is shown in Figure 5 in the same manner 
as in the previous figures.

Figures 4 and 5 demonstrate that branch cuts change, if 
different formulations for the potential functions are used. For 
the basic superposition solution the cuts extend to negative 
infinity parallel to the real axis. For the functions Ψ2, depicted 
in the sub-plots on the right of both figures, the branch cuts take 
a curved shape.

As a preliminary statement we conclude that the location of 
the branch cuts depends on the mathematical formulation of the 
function. The branch cuts may extend horizontally, vertically or 
take even a curved path within the domain. Using the genuine 
superposition, i.e. the addition of the log-terms, the branch cut 
locations are well- known: they extend from their base position 
in the domain parallel to the real axis towards negative infinity.

Domain Partition

The finding of the previous subchapter that the branch cuts 
of the superposed logarithmic potentials in the graphical 
visualisations extend horizontally towards the left margin can 
be utilized to construct a flow net without the inconsistencies 
for the streamlines. The proposed algorithm is outlined for the 
superposition of three logarithms:

( ) 1 1 2 2 3 3( ) ( ) ( )z log z z log z z log z zΨ = Ψ − +Ψ − +Ψ −     (11)

 with z1 = 150(1+ i):  z2 = 180 + 250i:  z3 = 360 + 280i with 
coefficients. The entire domain is divided in bands and 
partitions as shown in Figure 6.

The algorithm starts with band 1, where the function is 
evaluated as given in equation (11) and visualised. Then one 
proceeds in the same way with block (2.1) in band 2, where 
again equation (11) is evaluated. What follows is block (2.2), 
where the  jump at the branch cut for Ψ3 log(z − z3) has to be 
considered. The jump at the branch cut is 2πΨ3i . Thus one has 
to evaluate:

(12)

The algorithm proceeds with the next band and partition on 
the left, i.e. block (3.1). Here equation (11) is evaluated. In the 
following block (3.2) one has to take the streamfunction jump 
at the branch for Ψ2 log(z − z2 ) into account and compute for 
the visualisation. Continuing in this manner, the function to 
evaluate in the next block (3.3) is:

	
(13)
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Figure 6: Example of domain partitioning for 3-logarithm superposition
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As final steps one has to proceed in the same way with the 
blocks (4.1) to (4.4) in band 4.

The described algorithm works for all superpositions of 
complex logarithms. If there are more then three logarithms to 
be included more bands and blocks have to be added, which are 
partitioned in the way outlined above.
Results

The described algorithm was implemented in MATLAB® and 
can be used for applications that include base flow and multiple 
line sinks and sources [8]. An example is shown in Figure 7.

Figure 7 visualises a flow field that includes a sink, a source 
and an isopotential circular obstacle. On the left the figure 
shows the result of a straightforward computation, while the on 
the right the result of the above described method with domain 
partition is depicted. Clearly the branch cuts that disturb the 
sub-figure on the right are eliminated in the plot on the right.

The flow fields, showing potentials in black and white and 
streamlines as white contour lines, are the same in both sub-
plots. Where streamlines are dense, the velocity is high; where 
the streamlines are apart, the velocity is relatively low. Thus the 
streamline distribution clearly shows the high velocities in the 
close vicinity of the sink and the source.

As mentioned above streamfunction contouring, in contrast 
to particle tracing, allows visual balancing of flow rates by 
counting streamtubes between adjacent streamlines. Of the 12 
streamtubes connected to the source on the lower left, 4 reach 
the sink at the upper right of the figures.
Conclusions

In the preceding we have shown how to visualize flow-nets of 
potential flow, avoiding the disturbances resulting from branch 
cuts of the principal branches of the potential functions. The 
basic recipe is to evaluate the functions in sub-domains instead 
of using a formula globally for the entire domain. The partition 
into sub-domains is determined by the branch cuts that depend 
on the formulation of the function. Thus it is important to select 
a formulation that allows an appropriate partition of the domain.

In several examples it was shown how the formulation of 
the potential determines the location of the branch cuts. Thus, 
in order to follow the outlined method a formulation has to be 
chosen that keeps the branch cuts simple and easy to access 
computationally. Only then the sub-domains can be identified.

For the complex logarithm it was demonstrated that the 
basic superposition formulation introduces a simple branch 
cut pattern: lines from a base point parallel to the real axis 
to negative infinity. This pattern allows the partitioning into 
rectangular blocks on which the potential formula is evaluated 
separately and sequentially, taking the jumps at the branch cuts 
into account.

Figure 7.  Flow net with sink and source around a circular obstacle; without (left) and with (right) domain 
partition

Function Branch Cut
√, zω, log negative real axis

arcsin, arcos, arctanh real axis without ]-1,1[
arctan, arcsinh imaginary axis without ]-i,i[

arccosh real axis ≤1

Table 1. List of complex functions and their branch cuts, following [5]

Similar partitioning can be performed for other functions as 
well. Table 1 lists functions that have branch cuts either along 
the real or imaginary axes. For these functions partitioning into 
rectangular blocks can be performed as demonstrated above.

The method outlined here overcomes the problems posed by 
branch cuts of functions of the complex plane to the complex 
plane. The author hopes it may help to utilize more the 
advantages of streamfunction contouring over other streamline 
tracing techniques.
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